微分和积分公式大全

1 极限公式

(系数不为0的情况)
在这里插入图片描述
在这里插入图片描述

2 下列常用等价无穷小关系(x->0)

在这里插入图片描述

3 导数的四则运算法则

在这里插入图片描述

4 基本导数公式

在这里插入图片描述

5 高阶导数的运算法则

在这里插入图片描述

6 基本初等函数的n阶导数公式

在这里插入图片描述

7 微分公式与微分运算法则

在这里插入图片描述

8 微分运算法则

在这里插入图片描述

9 基本积分公式

在这里插入图片描述

10 下列常用凑微分公式

在这里插入图片描述

11 补充下面几个积分公式

在这里插入图片描述

12 分部积分法公式

分部积分公式:
在这里插入图片描述
在这里插入图片描述

13 第二换元积分法中的三角换元公式

在这里插入图片描述

14 特殊角的三角函数值

在这里插入图片描述

15 三角函数公式

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

16 几种常见的微分方程

在这里插入图片描述

原文链接:微分和积分数学公式大全

<think>嗯,用户现在问的是PID运算公式。首先,我需要确认用户对PID控制的理解程度。PID是控制工程中非常经典的东西,可能用户是学生,或者刚接触自动控制领域,想了解基础概念。也有可能用户在实际应用中遇到了问题,需要公式来调整控制器参数。 先回忆一下PID的基本组成,比例、积分微分三个环节。公式的话,应该分为位置式PID增量式PID两种。用户可能需要的是一般的表达式,所以得先写出标准的PID公式,用LaTeX格式,并且按照之前的系统指令,行内公式用$...$,独立公式用$$...$$,并且确保语法正确。 接下来,用户的需求可能不仅仅是公式本身,可能还需要每个项的解释,以及参数调整的影响。比如,比例项的作用,积分消除稳态误差,微分预测变化趋势。这些解释有助于用户理解公式的意义,而不仅仅是数学表达式。 还要考虑用户可能的后续问题,比如如何调整Kp、Ki、Kd参数,或者实际应用中的问题,比如积分。是否需要在回答中提前包含这些内容?可能简要提及,但不要过于深入,避免信息过载。 另外,用户可能是在学习控制理论,或者在做项目时需要实现PID控制器,所以给出公式的不同形式(位置式增量式)会有帮助。同时,注意用中文解释清楚,结构清晰,分步骤说明,这样用户更容易理解。 还要检查是否所有数学公式都正确使用了规定的格式,比如积分符号、微分项是否正确,比如微分项应该是误差的微分,而不是输出的微分,这点容易出错,需要确认公式的正确性。 可能用户的问题在于实现PID时遇到了问题,比如代码中的公式有误,或者参数调不好,所以需要明确的公式每个部分的意义。这时候举例说明会有帮助,比如温度控制的例子,说明每个项的作用。 最后,确保回答结构清晰,先介绍PID是什么,然后给出公式,分解每个部分,再讨论参数影响,可能的问题,以及应用示例。这样用户能逐步理解,并应用到实际中。</think>好的!PID(比例-积分-微分)控制是一种经典的控制算法,广泛应用于工业控制、机器人、自动化等领域。以下从**公式定义**、**各环节作用****参数意义**三个方面进行介绍: --- ### 1. **PID 运算公式** #### **位置式 PID(标准形式)** $$ u(t) = K_p e(t) + K_i \int_{0}^{t} e(\tau) d\tau + K_d \frac{de(t)}{dt} $$ 其中: - $u(t)$:控制器输出(控制量) - $e(t)$:当前误差(设定值与实际值的偏差,即 $e(t) = r(t) - y(t)$) - $K_p$:比例系数 - $K_i$:积分系数(通常 $K_i = \frac{K_p}{T_i}$,$T_i$ 为积分时间常数) - $K_d$:微分系数(通常 $K_d = K_p T_d$,$T_d$ 为微分时间常数) #### **增量式 PID(离散化形式)** 适用于数字控制,输出为控制量的增量: $$ \Delta u(k) = K_p [e(k) - e(k-1)] + K_i e(k) + K_d [e(k) - 2e(k-1) + e(k-2)] $$ 其中 $k$ 表示第 $k$ 个采样时刻。 --- ### 2. **各环节的作用** - **比例项(P)** - 公式:$K_p e(t)$ - 作用:快速响应误差,误差越大,输出调整越强。但纯比例控制会导致**稳态误差**(残余偏差)。 - **积分项(I)** - 公式:$K_i \int e(t) dt$ - 作用:积累历史误差,消除稳态误差。但积分过强会引发**超调**或振荡。 - **微分项(D)** - 公式:$K_d \frac{de(t)}{dt}$ - 作用:预测误差变化趋势,抑制超调,提高系统稳定性。但对噪声敏感,需谨慎使用。 --- ### 3. **参数调整的意义** - **$K_p$(比例系数)** - 增大 $K_p$:加快响应速度,但可能导致振荡。 - 过小:响应迟缓,稳态误差大。 - **$K_i$(积分系数)** - 增大 $K_i$:更快消除稳态误差,但可能加剧振荡。 - 过小:残余误差消除慢。 - **$K_d$(微分系数)** - 增大 $K_d$:抑制振荡,但可能放大噪声影响。 - 过小:系统稳定性下降。 --- ### 4. **实际应用示例** 假设控制一个加热器的温度: 1. **当前温度低于目标值** → 比例项 $K_p e(t)$ 输出增大加热功率。 2. **长时间未达到目标** → 积分项持续累积误差,进一步增加功率。 3. **温度接近目标时上升过快** → 微分项检测到变化率过高,提前减小功率,防止超调。 --- ### 常见问题 - **积分**:长时间误差未消除时,积分项累积过大,导致控制量超出实际范围。解决方法包括积分分离、抗饱算法。 - **噪声干扰**:微分项易受噪声影响,通常需对测量信号滤波。 如果需要具体参数整定方法(如试凑法、Ziegler-Nichols法)或更深入分析,请进一步说明!
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值