Swin Transformer之PatchMerging原理及源码

本文详细介绍了Transformer中Patch Merging层的工作原理和实现方式,该层用于下采样,减少分辨率,调整通道数,并在保持信息完整性的前提下节省计算量。与传统的池化操作不同,Patch Merging通过拼接相邻的patch来实现降采样,最终通过线性层减少通道数。源代码展示了如何在PyTorch中实现这一过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.图示

 2.原理

Patch Merging层进行下采样。该模块的作用是做降采样,用于缩小分辨率,调整通道数 进而形成层次化的设计,同时也能节省一定运算量。

在CNN中,则是在每个Stage开始前用stride=2的卷积/池化层来降低分辨率。

patch Merging是一个类似于池化的操作,但是比Pooling操作复杂一些。池化会损失信息,patch Merging不会。

每次降采样是两倍,因此在行方向和列方向上,按位置间隔2选取元素,拼成新的patch,再把所有patch都concat起来作为一整个张量,最后展开。此时通道维度会变成原先的4倍(因为H,W各缩小2倍),此时再通过一个全连接层再调整通道维度为原来的两倍。

3.源码

import torch
import torch.nn as nn
import math
import numpy as np


class PatchMerging(nn.Module):
    r""" Patch Merging Layer.
    Args:
        input_resolution (tuple[int]): Resolution of input feature.
        dim (int): Number of input channels.
        norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
    """

    def __init__(self, dim, norm_layer=nn.LayerNorm):
        super().__init__()

        self.dim = dim
        self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
        self.norm = norm_layer(4 * dim)

    def forward(self, x):
        """
        x: B, H*W, C
        """
        B, L, C = x.shape
        H = int(math.sqrt(L))
        W = int(math.sqrt(L))

        assert L == H * W, "input feature has wrong size"
        assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."

        x = x.view(B, H, W, C)
        print('--------------------------')
        print(x)
        print('原始图像4D维度:',x.shape)

        # 在行和列方向上间隔1选取元素
        x0 = x[:, 0::2, 0::2, :]  # B H/2 W/2 C
        print('--------------------------')
        print(x0)
        print('切分图像4D维度:',x0.shape)
        x1 = x[:, 1::2, 0::2, :]  # B H/2 W/2 C
        print('--------------------------')
        print(x1)
        print('切分图像4D维度:',x1.shape)
        x2 = x[:, 0::2, 1::2, :]  # B H/2 W/2 C
        print('--------------------------')
        print(x2)
        print('切分图像4D维度:',x2.shape)
        x3 = x[:, 1::2, 1::2, :]  # B H/2 W/2 C
        print('--------------------------')
        print(x3)
        print('切分图像4D维度:',x3.shape)

        # 拼接到一起作为一整个张量
        x = torch.cat([x0, x1, x2, x3], -1)  # B H/2 W/2 4*C
        print('--------------------------')
        print(x)
        print('拼接整个张量后:',x.shape)
        x = x.view(B, -1, 4 * C)  # B H/2*W/2 4*C
        print('--------------------------')
        print(x)
        print('合并行和列后:',x.shape)

        x = self.norm(x)           # 归一化操作
        print('--------------------------')
        print(x)
        print('归一化操作后:', x.shape)
        x = self.reduction(x)      # 降维,通道降低2倍
        print('--------------------------')
        print(x)
        print('通道降低2倍后:', x.shape)

        return x
if __name__ == "__main__":

    x = np.array([[0, 2, 0, 2],[ 1, 3, 1, 3 ],[ 0, 2, 0, 2 ],[ 1, 3, 1, 3 ]])
    x = torch.from_numpy(x)
    x = x.view(1, 4*4, 1)
    x=x.to(torch.float32)
    model = PatchMerging(1)
    print('--------------------------')
    print(x)
    print('原始图像3D维度:', x.shape)
    y = model(x)


<think>嗯,用户想了解如何配置和使用yum源。首先,我需要回忆一下关于yum源的基本知识。记得yum源是软件仓库,用来管理RPM包的安装和依赖关系。配置yum源通常涉及编辑.repo文件,这些文件位于/etc/yum.repos.d/目录下。还有可能涉及到本地源和网络源的配置。 根据用户提供的引用内容,引用[2]提到yum的配置文件分为main和repository部分,main在/etc/yum.conf,而repository在/etc/yum.repos.d/里的各个文件。所以配置的时候需要关注这两个部分。用户可能遇到的问题包括如何创建新的源文件,如何指向本地或网络路径,以及如何处理GPG检查。 用户的问题可能包括步骤不清晰,比如如何挂载ISO镜像来配置本地源。引用[3]中提到了创建local.repo文件,并指定baseurl为file:///路径。这时候需要确保挂载点正确,并且权限设置没问题。另外,可能需要禁用默认的网络源,避免冲突。 用户还可能关心如何测试配置后的yum源是否生效,比如运行yum clean all和yum makecache。此外,常见问题如无法找到包,可能和baseurl的配置错误有关,或者网络源不可达。需要检查URL是否正确,网络连接是否正常。 可能还需要解释不同的源类型,比如本地、网络(如阿里云、清华源),以及如何备份原有的配置文件,避免出错后恢复。引用[1]提到可以将默认文件移到/opt下或重命名,这样可以禁用默认源,避免干扰。 总结下来,回答的结构应该分步骤,包括备份、创建repo文件、配置内容、清理缓存,然后验证。同时,常见问题部分需要列出可能的问题和解决方法,如GPG检查、路径错误等。还要注意使用正确的格式,行内变量用$符号,独立公式用$$,不过这里可能数学公式不多,但需要确保LaTeX正确。</think>### 如何配置和使用yum源? #### 一、yum源的核心配置方法 1. **备份默认源** 操作前建议备份系统原有源配置: ```bash mv /etc/yum.repos.d/*.repo /opt/backup/ # 将默认源文件移动到备份目录 ``` 这是为了防止原有配置与新配置产生冲突[^1]。 2. **本地yum源配置** - **挂载镜像文件** 将CentOS镜像文件挂载到指定目录: ```bash mount -o loop /path/to/CentOS-ISO /mnt/cdrom ``` - **创建配置文件** 新建`/etc/yum.repos.d/local.repo`并写入: ```ini [local-base] name=Local-CentOS-Base baseurl=file:///mnt/cdrom gpgcheck=0 enabled=1 ``` 关键参数说明: - `baseurl`:本地路径使用`file://`协议头[^3] - `gpgcheck=0`表示跳过数字签名验证 3. **网络yum源配置** 以阿里云源为例,创建`/etc/yum.repos.d/aliyun.repo`: ```ini [aliyun-base] name=Aliyun-CentOS-Base baseurl=https://mirrors.aliyun.com/centos/$releasever/os/$basearch/ gpgcheck=1 gpgkey=https://mirrors.aliyun.com/centos/RPM-GPG-KEY-CentOS-7 enabled=1 ``` 注意:`$releasever`和`$basearch`会自动解析为系统版本和架构[^2] #### 二、关键操作命令 1. **清理缓存并更新** ```bash yum clean all # 清除旧缓存 yum makecache # 生成新缓存 yum repolist all # 验证源状态 ``` 2. **典型使用场景** ```bash yum install httpd -y # 安装软件包 yum update # 更新所有软件 yum search python3 # 搜索软件包 ``` #### 三、常见问题排查 | 问题现象 | 解决方案 | |---------|----------| | `Could not resolve host` | 检查网络连接和`baseurl`地址 | | `Package not found` | 确认仓库是否包含该软件包版本 | | GPG签名校验失败 | 设置`gpgcheck=0`或导入正确密钥 | #### 四、进阶配置技巧 1. **多源优先级控制** 安装`yum-plugin-priorities`插件,在`.repo`文件中添加: ```ini priority=1 # 数字越小优先级越高 ``` 2. **仓库分组管理** 通过`[epel]`、`[docker]`等独立仓库配置实现分类管理
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值