tf.Variable()和tf.get_variable()的使用方法和相同点


# tf.Variable() variable 且以大写字母开头,该函数在于定义一个变量

import tensorflow as tf

a1 = tf.Variable(1, name='a1')                                                # 用变量初始化
a2 = tf.Variable(tf.constant(1), name='a2')                                   # 用变量初始化
a3 = tf.Variable(tf.random_normal(shape=[2,3], mean=0, stddev=1), name='a3')  # 用随机数初始化 
a4 = tf.Variable(tf.ones(shape=[2,3]), name='a4')                             # 用one矩阵初始化 
 
init = tf.global_variables_initializer()  #输出数据时必须要全局初始化
 
with tf.Session() as sess:
    sess.run(init)
    print sess.run(a1)
    print sess.run(a2)
    print sess.run(a3)

# tf.get_variable():可根据 name 值,返回该变量,如果该 name 不存在的话,则会进行创建;

# 定义常量
a5 = tf.get_variable(name='a5', initializer=22) 
# 定义正态分布的随机变量 
a6 = tf.get_variable(name='a6', shape=[2,3], initializer=tf.random_normal_initializer(mean=0, stddev=1))  
# 定义常量向量
a7 = tf.get_variable(name='a7', shape=[1], initializer=tf.constant_initializer(1))  
# 全是1的矩阵
a8 = tf.get_variable(name='a8', shape=[2,3], initializer=tf.ones_initializer())  

init = tf.global_variables_initializer()  #输出数据时必须要全局初始化
  
with tf.Session() as sess:  
    sess.run(init)  
    print sess.run(a5)  
    print sess.run(a6)  
    print sess.run(a7)  
    print sess.run(a8)

tf.get_variable(name,  shape, initializer): name就是变量的名称,shape是变量的维度,initializer是变量初始化的方式,初始化的方式有以下几种:

tf.constant_initializer:常量初始化函数

tf.random_normal_initializer:正态分布

tf.truncated_normal_initializer:截取的正态分布

tf.random_uniform_initializer:均匀分布

tf.zeros_initializer:全部是0

tf.ones_initializer:全是1

tf.uniform_unit_scaling_initializer:满足均匀分布,但不影响输出数量级的随机值


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值