2.5 变量OP

1 创建变量
2 使用tf.variable_scope()修改变量的命名空间

TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:

存储持久化(可以存放在磁盘里--权重参数)
可修改值(动态修改)
可指定被训练

 

 

1 创建变量

  • tf.Variable(initial_value=None,trainable=True,collections=None,name=None)

    • initial_value:初始化的值

    • trainable:是否被训练

    • collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES

  • 变量需要显式(手动)初始化,才能运行值

def variable_demo():
    """
    变量的演示
    :return:
    """
    # 定义变量
    a = tf.Variable(initial_value=30)
    b = tf.Variable(initial_value=40)
    sum = tf.add(a, b)

    # (显示)初始化变量
    init = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        # 变量初始化
        sess.run(init)
        print("sum:\n", sess.run(sum))

    return None

 

2 使用tf.variable_scope()修改变量的命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):
    var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
    var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
    
<tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值