2020-5-27有限元从0开始第八天(插值算子)

继续给出参考资料镇楼
Brenner S, Scott R. The mathematical theory of finite element methods[M]. Springer Science & Business Media, 2007.
2021-5-26 第七天 (有限元的基本概念)

昨日内容简要回忆

在前面昨天的文章中, 讲述了有限元的基本概念, 给出了有限元的基本定义, 尤其是给出引理, 给出验证有限元定义第三条的方法, 即怎么去验证所给出的 N \mathcal{N} N, 定义了给定有限元空间 P \mathcal{P} P 的对偶空间 P ′ \mathcal{P}^{'} P上的一个基函数.

3.3 插值

参考资料的 P71-77 给出了常用的三角形有限元的例子,可自行参考.
本章要进行的事情, 是希望把前面给出的三角形单元通过适当的方法进行拼接, 利用这样的方法来去构造出 Sobolev 空间的子空间, 首先给出局部插值算子的定义
定义: 局部插值算子
考虑有限元 ( K , P , N ) \left(K, \mathcal{P}, \mathcal{N}\right) (K,P,N), 记集合 { ϕ i ∣ 1 ≤ i ≤ k } ⊂ P \left\lbrace \phi_{i} | 1 \leq i \leq k \right\rbrace \subset \mathcal{P} {ϕi1ik}P 表示 N \mathcal{N} N 的对偶基, 假设 v v v 为函数, 并且对于 N i ∈ N N_{i} \in \mathcal{N} NiN, N i ( v ) N_{i}(v) Ni(v) 能够定义, 则可以定义如下的插值算子:
I K v : = ∑ i = 1 k N i ( v ) ϕ i \mathcal{I}_{K}v := \sum_{i=1}^{k} N_{i}(v) \phi_{i} IKv:=i=1kNi(v)ϕi

例子:
K K K 表示如图所示的三角形, P = P 1 \mathcal{P} = \mathcal{P}_{1} P=P1 为次数不超过1的多项式空间, N = { N 1 , N 2 , N 3 } \mathcal{N} = \left\lbrace N_{1}, N_{2}, N_{3} \right\rbrace N={N1,N2,N3}, N i ( v ) = v ( i ) N_{i}(v) = v(i) Ni(v)=v(i), 下面考虑 f ( x , y ) = e x y f(x, y) = e^{xy} f(x,y)=exy, 写出 I k f \mathcal{I}_{k} f Ikf
在这里插入图片描述 I k f = N 1 ( f ) ϕ 1 + N 2 ( f ) ϕ 2 + N 3 ( f ) ϕ 3 \mathcal{I}_{k} f = N_{1}(f) \phi_{1} + N_{2}(f)\phi_{2} + N_{3}(f)\phi_{3} Ikf=N1(f)ϕ1+N2(f)ϕ2+N3(f)ϕ3
给定点编号顺序: 从左往右,从下往上依次编号为 1,2,3, 则:
N 1 ( f ) = N 2 ( f ) = N 3 ( f ) = 1 ϕ 1 ( x , y ) = 1 − x − y ϕ 2 ( x , y ) = x ϕ 3 ( x , y ) = y \begin{aligned} &N_{1}(f) = N_{2}(f) = N_{3}(f) = 1\\ &\phi_{1}(x, y) = 1 - x - y \\ &\phi_{2}(x, y) = x \\ &\phi_{3}(x, y) = y \end{aligned} N1(f)=N2(f)=N3(f)=1ϕ1(x,y)=1xyϕ2(x,y)=xϕ3(x,y)=y
从而有:
I k f = 1 − x − y + x + y = 1 \begin{aligned} \mathcal{I}_{k}f = 1 - x - y + x + y = 1 \end{aligned} Ikf=1xy+x+y=1

插值算子性质:

性质1 I K \mathcal{I}_{K} IK 为线性算子.

证明: 由定义: I K v = ∑ i = 1 k ϕ i N i ( v ) \mathcal{I}_{K}v = \sum\limits_{i=1}^{k}\phi_{i}N_{i}(v) IKv=i=1kϕiNi(v), 利用 N i N_{i} Ni 的线性性质, 马上可以知道 I k \mathcal{I}_{k} Ik 为线性算子.

性质2 N i ( I K f ) = N i f ,   ( 插值性质 ) . N_{i}\left(\mathcal{I}_{K}f\right) = N_{i}f, \ (\text{插值性质}). Ni(IKf)=Nif, (插值性质).

证明:
N i ( I K f ) = N i ( ∑ j = 1 k N j ( f ) ϕ j ) = ∑ j = 1 k N j ( f ) N i ( ϕ j ) = ∑ j = 1 k N j ( f ) δ i j = N i ( f ) \begin{aligned} N_{i}(\mathcal{I}_{K}f) &= N_{i}\left(\sum\limits_{j = 1}^{k}N_{j} (f) \phi_{j}\right) \\ &=\sum\limits_{j=1}^{k}N_{j}(f)N_{i}(\phi_{j}) = \sum\limits_{j=1}^{k}N_{j}(f)\delta_{ij} \\ &= N_{i}(f) \end{aligned} Ni(IKf)=Ni(j=1kNj(f)ϕj)=j=1kNj(f)Ni(ϕj)=j=1kNj(f)δij=Ni(f)
性质3 假设, f ∈ P f \in \mathcal{P} fP, 则有 I K f = f \mathcal{I}_{K}f = f IKf=f, 从而可以知道, I k \mathcal{I}_{k} Ik 为幂等算子.
证明, 利用 N i ( I K f − f ) = 0 ,   ∀ i N_{i}\left(\mathcal{I}_{K}f - f \right) = 0, \ \forall i Ni(IKff)=0, i 以及 I K f − f ∈ P \mathcal{I}_{K}f - f \in \mathcal{P} IKffP, 由前面引理可知:
I k f = f \mathcal{I}_{k}f = f Ikf=f
利用上式, 可知幂等性显然.

下满考虑单元的拼接, 首先给出以下定义:

定义:(区域的划分) 称有限个单元区域 { K i } \left\lbrace K_{i} \right\rbrace {Ki}是区域 Ω \Omega Ω 的一个划分, 如以下两条成立

  • int K i ∩ int K j = ∅ \text{int}K_{i} \cap \text{int} K_{j} = \empty intKiintKj=,
  • ∪ K i = Ω ‾ \cup K_{i} = \overline{\Omega} Ki=Ω.

定义:(全局插值算子) 假设 Ω \Omega Ω 为区域, T \mathcal{T} T 为区域 Ω \Omega Ω 的一个剖分, 假设在每个单元 K K K 使用形函数空间 P \mathcal{P} P, 以及定义节点变量 N \mathcal{N} N, 使得 ( K , P , N ) (K,\mathcal{P}, \mathcal{N}) (K,P,N) 为构成有限元, 假设 m m m 是节点变量所具有的最高阶导数, 假设 f ∈ C m ( Ω ‾ ) f \in C^{m}(\overline{\Omega}) fCm(Ω), 则可以如下定义全局插值:

I T f ∣ K i = I K i f \left.\mathcal{I}_{\mathcal{T}}f\right|_{K_{i}} = \mathcal{I}_{K_{i}}f ITfKi=IKif

注:如果不对划分作进一步的假设, 则全局插值不一定具有连续性.后面就是去介绍在什么条件下能够获得这种全局的连续性. 下面只考虑二维的三角形单元, 类似的结果可以做相应的推广.

定义:(多边形区域的三角剖分) 多边形区域的三角划分,处理满足以上条件,还需要满足:

  • 任意一个三角形, 定点不会落在其它三角形边的内部或者其它三角形的内部.

例子:(全局插值算子) 考虑如下矩形区域的三角剖分
在这里插入图片描述考虑拉格朗日有限元, 可以知道, T 1 T_{1} T1 的对偶基为: { 1 − x − y , x , y } \left\lbrace 1 - x - y, x, y \right\rbrace {1xy,x,y}, 以及 T 2 T_{2} T2 的对偶基为: { 1 − x , 1 − y , x + y − 1 } \left\lbrace 1-x, 1-y, x+y-1\right\rbrace {1x,1y,x+y1}, 考虑 f = sin ⁡ ( π ( x + y ) / 2 ) f = \sin{\left( \pi(x + y) /2\right)} f=sin(π(x+y)/2), 计算 f f f 到区域上的全局插值.

由:

f ( 0 , 0 ) = 0 , f ( 1 , 0 ) = 1 f ( 0 , 1 ) = 1 , f ( 1 , 1 ) = 0 \begin{aligned} f(0, 0) = 0, \quad f(1, 0) = 1 \\ f(0, 1) = 1, \quad f(1, 1) = 0 \end{aligned} f(0,0)=0,f(1,0)=1f(0,1)=1,f(1,1)=0
从而有:
I T f ∣ T 1 = 0 ⋅ ( 1 − x − y ) + 1 ⋅ x + 1 ⋅ y = x + y I T f ∣ T 2 = 1 ⋅ ( 1 − x ) + 1 ⋅ ( 1 − y ) + 0 ⋅ ( x + y − 1 ) = 2 − x − y \begin{aligned} &\left.\mathcal{I}_{\mathcal{T}}f\right|_{T_{1}} = 0 \cdot (1 - x- y) + 1\cdot x + 1 \cdot y = x+y \\ &\left.\mathcal{I}_{\mathcal{T}}f \right|_{T_{2}} = 1 \cdot (1 - x) + 1 \cdot (1 - y) + 0 \cdot (x + y - 1) = 2 - x - y \end{aligned} ITfT1=0(1xy)+1x+1y=x+yITfT2=1(1x)+1(1y)+0(x+y1)=2xy
从而可以知道全局插值算子:
I T f = { x + y on  T 1 2 − x − y on  T 2 . \mathcal{I}_{\mathcal{T}}f = \begin{cases} x + y \quad \text{on} \ T_{1} \\ 2 - x - y \quad \text{on} \ T_{2}. \end{cases} ITf={x+yon T12xyon T2.

注: 为了对齐次 Dirichlet 边值问题进行逼近,将使用由符合边界条件的分片多项式来作为有限维空间, 即:
V T = { I T f : f ∈ C m ( Ω ‾ ) , f ∣ ∂ Ω = 0 } V_{T} = \left\lbrace \mathcal{I}_{T}f : f\in C^{m}\left(\overline{\Omega}\right), \left.f\right|_{\partial \Omega} = 0 \right\rbrace VT={ITf:fCm(Ω),fΩ=0}

定义(’’ C r C^{r} Cr’‘有限元空间) 称插值具有 r r r 阶连续性,简记为 ‘’ C r C^{r} Cr’’ 如果对于一切的 f ∈ C m ( Ω ‾ ) f \in C^{m}\left(\overline{\Omega}\right) fCm(Ω), 成立 I T f ∈ C r \mathcal{I}_{T} f \in C^{r} ITfCr, 称空间 V T = { I T f : f ∈ C m } V_{T} = \left\lbrace \mathcal{I}_{T}f : f \in C^{m} \right\rbrace VT={ITf:fCm} 为 “ C r C^{r} Cr” 有限元空间.

注释 用于构造 C r C^{r} Cr 空间的有限元通常称为是 C r C^{r} Cr 连续的, 并不是任何一种选取节点的方式, 构造出来的有限元都能是 C r C^{r} Cr 连续的, 节点的选择必须符合一定的规律. 现有的有限元当中, 选取节点的一个关键点是, 节点应该按照不依赖于坐标的, 关于边中点具有对称性的顺序进行配置.

性质: Lagrange 有限元以及 Hernite 有限元都是 C 0 C^{0} C0 有限元, A r g y r i s Argyris Argyris 有限元为 C 1 C^{1} C1 有限, 更准确地来说, 对于一个给定区域 Ω \Omega Ω 的三角形网格 剖分 T \mathcal{T} T, 能够找到合适的节点, 构造出有限元 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N), K ∈ T K \in \mathcal{T} KT, 使得当 f ∈ C m f \in C^{m} fCm (Lagrange 元 m = 0 m = 0 m=0, Hermite元, m = 1 m = 1 m=1, Argyris 元 m = 2 m=2 m=2 ) 时, 成立 I T f ∈ C r \mathcal{I}_{\mathcal{T}} f \in C^{r} ITfCr (Lagrange 以及 Hermite 元, r = 0 r= 0 r=0, Argyris 元, r = 1 r = 1 r=1. ) 特别的, 如果取每条边 x x ′ ‾ \overline{\mathbf{x}\mathbf{x'}} xx的节点为: ξ i ( x ′ − x ) + x \xi_{i}(\mathbf{x}' - \mathbf{x} ) + \mathbf{x} ξi(xx)+x, 其中 { ξ i = 1 , ⋯   , k − 1 − 2 m } \left\lbrace \xi_{i} = 1, \cdots, k - 1 -2m\right\rbrace {ξi=1,,k12m} 固定, 并且关于 ξ = 1 / 2 \xi = 1/2 ξ=1/2 对称, 除此以外, 在这些假设之下, 成立 I τ f ∈ W ∞ r + 1 . \mathcal{I}_{\tau} f \in W_{\infty}^{r+1}. IτfWr+1.

只需要证明结论在跨越边界的地方成立即可, 考虑两个具有公共边 e e e 的单元, 由于边上的节点以某种对称的方式不依赖于坐标地进行选取, 因此两个单元在边 e e e 上公用节点, 记 w = I T 1 f − I T 2 f w = \mathcal{I}_{T_{1}}f - \mathcal{I}_{T_{2}}f w=IT1fIT2f, 则 w w w 仍然是一个相应次数的多项式, 并且将其限制到边上, 具有一维的 Lagrange, Hermite, Argyris 节点, 并且都为 0, 从而知道 w ∣ e = 0 \left.w\right|_{e} = 0 we=0. 从而跨越每条边时, 插值都是连续的.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值