2020-5-29有限元从0开始第九天(有限元的等价性)

继续给出参考资料镇楼
Brenner S, Scott R. The mathematical theory of finite element methods[M]. Springer Science & Business Media, 2007.
2020-5-27有限元从0开始第八天(插值算子)

上次内容简要回忆

在前面博客中给出了有限元局部插值算子, 以及全局插值算子的定义, 例子以及一些相关的性质, 在本节主要接招有限元的等价性.

3.4 有限元的等价性

在全局插值的应用中, 找到插值 I T \mathcal{I}_{\mathcal{T}} IT 在需要范数意义下的一致有界性(不依赖于网格) 是非常重要的, 为此需要在所有单元上比较局部插值算子,建立有限元之间的等价性在做这一点的时候是非常重要的.

定义:(仿射等价有限元) 假设 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) 为有限元, 记 F ( x ) = A x + b F(x) = Ax + b F(x)=Ax+b 为非退化仿射变换, 称有限元 ( K ^ , P ^ , N ^ ) \left( \widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}}\right) (K ,P ,N ) 和有限元 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) 之间是仿射等价的, 如果下面几条成立:

  • F ( K ) = F ( K ^ ) F\left(K\right) = F\left(\widehat{K}\right) F(K)=F(K )
  • F ∗ P ^ = P F^{*}\widehat{\mathcal{P}} = \mathcal{P} FP =P
  • F ∗ N = N F_{*}\mathcal{N} = \mathcal{N} FN=N

其中 F ∗ ( f ^ ) = f ^ ∘ F F^{*}(\widehat{f}) = \widehat{f} \circ F F(f )=f F 称为 pull-back, ( F ∗ N ) ( f ^ ) = N ( F ∗ ( f ^ ) ) \left( F_{*}\mathcal{N} \right)(\widehat{f}) = \mathcal{N}\left(F^{*} (\widehat{f})\right) (FN)(f )=N(F(f )) 称为 push-forward.

性质: 仿射等价性为等价关系.

对称性显然

利用 push-forward 以及 pull-pack 的性质, 可以知道传递性显然

下面证明自反性质, 即假设 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) ( K ^ , P ^ , N ^ ) \left( \widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}}\right) (K ,P ,N ) 是仿射等价的, 则存在非退化仿射变换 F = A x + b F = Ax + b F=Ax+b, 使得

  • F ( K ) = F ( K ^ ) F\left(K\right) = F\left(\widehat{K}\right) F(K)=F(K )
  • F ∗ P ^ = P F^{*}\widehat{\mathcal{P}} = \mathcal{P} FP =P
  • F ∗ N = N F_{*}\mathcal{N} = \mathcal{N} FN=N

下面定义 F F F 的逆:
F − 1 ( x ^ ) = A − 1 ( x ^ − b ) F^{-1}(\widehat{x}) = A^{-1}(\widehat{x} - b) F1(x )=A1(x b)
显然, 容易验证有 F − 1 ( K ^ ) = F − 1 ( K ) F^{-1}(\widehat{K}) = F^{-1}(K) F1(K )=F1(K)
再有:
( F − 1 ) ∗ f ( x ^ ) = f ∘ F − 1 ( x ^ ) = f ( x ) \begin{aligned} (F^{-1})^{*} f(\widehat{x}) = f \circ F^{-1}(\widehat{x}) = f(x) \end{aligned} (F1)f(x )=fF1(x )=f(x)
F ∗ − 1 ( N ^ ) ( f ) = N ^ ( ( F − 1 ) ∗ f ) = N ^ ( f ^ ) F^{-1}_{*}\left(\widehat{\mathcal{N}}\right)(f) = \widehat{\mathcal{N}}\left( (F^{-1})^{*} f \right) = \widehat{\mathcal{N}}(\widehat{f}) F1(N )(f)=N ((F1)f)=N (f )

仿射等价有限元的例子:

  • K K K 为三角形单元, P = P 1 \mathcal{P} = \mathcal{P}_{1} P=P1, N = { K 在 顶 点 处 的 取 值 } \mathcal{N} = \left\lbrace K 在顶点处的取值\right\rbrace N={K}.
  • K K K 为三角形单元, P = P 2 \mathcal{P} = \mathcal{P}_{2} P=P2, N = { K 在 顶 点 处 以 及 每 条 边 的 中 点 处 的 取 值 } \mathcal{N} = \left\lbrace K 在顶点处以及每条边的中点处的取值\right\rbrace N={K}.

存在某种节点的选取, 使得任意给定次数的 Lagrange 有限元是仿射等价的.

定义: (插值等价的有限元)

称有限元 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) ( K , P , N ~ ) \left( K, \mathcal{P}, \widetilde{\mathcal{N}}\right) (K,P,N ) 是插值等价的, 如果对一切充分光滑的函数 f f f, 成立:
I N f = I N ~ f , \mathcal{I}_{\mathcal{N}}f = \mathcal{I}_{\widetilde{\mathcal{N}}}f, INf=IN f,
其中, I N \mathcal{I}_{\mathcal{N}} IN 即为前面所定义的插值算子 I K \mathcal{I}_{K} IK, 即:
I N f = ∑ i = 1 n N i ( f ) ϕ i \mathcal{I}_{\mathcal{N}}f = \sum\limits_{i = 1}^{n} N_{i}(f) \phi_{i} INf=i=1nNi(f)ϕi
性质: ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) ( K , P , N ~ ) \left( K, \mathcal{P}, \widetilde{\mathcal{N}}\right) (K,P,N ) 为有限元, 则这两个有限元是插值等价充要条件为 N \mathcal{N} N 中的,每一个节点变量, 可以由 N ~ \widetilde{\mathcal{N}} N 中的节点变量进行线性表出.

证明: 先证明充分性, 任取 N i ∈ N N_{i} \in \mathcal{N} NiN,由条件可以知道, 存在 c j ,   j = 1 , 2 , ⋯   , n c_{j}, \ j=1,2,\cdots, n cj, j=1,2,,n, 使得:

N i = ∑ j = 1 n c j N ~ j N_{i} = \sum\limits_{j = 1}^{n} c_{j} \widetilde{N}_{j} Ni=j=1ncjN j
下面证明: I N f = I N ~ f \mathcal{I}_{\mathcal{N}}f = \mathcal{I}_{\widetilde{\mathcal{N}}}f INf=IN f 对于一切充分光滑的 f f f 成立. 思路是去证明 N i ( I N ~ f ) = N i ( f ) = N i ( I N f ) N_{i}\left(\mathcal{I}_{\widetilde{\mathcal{N}}}f\right) = N_{i}(f) = N_{i}(\mathcal{I}_{\mathcal{N}}f) Ni(IN f)=Ni(f)=Ni(INf).

N i ( I N ~ f ) = ∑ j = 1 n c j N ~ j ( I N ~ f ) = ∑ j = 1 n c j N ~ j ( f ) = N i f = N i ( I N f ) \begin{aligned} N_{i}\left(\mathcal{I}_{\widetilde{\mathcal{N}}}f\right) &= \sum\limits_{j=1}^{n}c_{j}\widetilde{N}_{j}(\mathcal{I}_{\widetilde{N}}f) = \sum\limits_{j=1}^{n}c_{j}\widetilde{N}_{j}(f) = N_{i} f = N_{i}(\mathcal{I}_{\mathcal{N}}f) \end{aligned} Ni(IN f)=j=1ncjN j(IN f)=j=1ncjN j(f)=Nif=Ni(INf)
,从而马上可以得到 N i ( I N ~ f − I N f ) = 0 N_{i}(\mathcal{I}_{\widetilde{\mathcal{N}}}f- \mathcal{I}_{N}f) = 0 Ni(IN fINf)=0, 利用 i i i 的任意性,以及 N \mathcal{N} N 的定义, 立马知道: I N f = I N ~ f . \mathcal{I}_{\mathcal{N}}f = \mathcal{I}_{\widetilde{\mathcal{N}}}f. INf=IN f.

再证明必要性, 假设 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) ( K , P , N ~ ) \left( K, \mathcal{P}, \widetilde{\mathcal{N}}\right) (K,P,N ) 是插值等价的有限元, 即有:
I N f = ∑ i = 1 n N i ( f ) ϕ i = ∑ j = 1 n N j ~ ( f ) ϕ j = I N ~ f \mathcal{I}_{\mathcal{N}}f = \sum\limits_{i = 1}^{n} N_{i}(f) \phi_{i} = \sum\limits_{j = 1}^{n} \widetilde{N_{j}}(f) \phi_{j} = \mathcal{I}_{\mathcal{\widetilde{N}}}f INf=i=1nNi(f)ϕi=j=1nNj (f)ϕj=IN f
下面去证明
N i = ∑ α = 1 n N i ( ϕ α ) N ~ α N_{i} = \sum\limits_{\alpha = 1}^{n} N_{i}(\phi_{\alpha}) \widetilde{N}_{\alpha} Ni=α=1nNi(ϕα)N α
注意到只需证明上式对一切的 { ϕ j } j = 1 n \left\lbrace\phi_{j}\right\rbrace_{j=1}^{n} {ϕj}j=1n成立即可, 利用插值的性质:
N i ( ϕ j ) = N i ( I N ( ϕ j ) ) = N i ( I N ~ ( ϕ j ) ) = N i ( ∑ α = 1 n N ~ α ( ϕ j ) ϕ α ) = ∑ α = 1 n N i ( ϕ α ) N ~ α ( ϕ j ) . \begin{aligned} N_{i}(\phi_{j}) &= N_{i}( \mathcal{I}_{\mathcal{N}}(\phi_{j})) = N_{i}\left( \mathcal{I}_{\widetilde{\mathcal{N}}}(\phi_{j}) \right) \\ &= N_{i}\left( \sum\limits_{\alpha = 1}^{n} \widetilde{N}_{\alpha}(\phi_{j})\phi_{\alpha} \right) \\ & = \sum\limits_{\alpha=1}^{n}N_{i}(\phi_{\alpha})\widetilde{N}_{\alpha}(\phi_{j}). \end{aligned} Ni(ϕj)=Ni(IN(ϕj))=Ni(IN (ϕj))=Ni(α=1nN α(ϕj)ϕα)=α=1nNi(ϕα)N α(ϕj).

插值等价有限元的例子:

  • 参考资料第76页给出的两个 Hermite 有限元具有插值等价性.

定义: 假设有限元 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) 和 有限元 ( K ^ , P ^ , N ^ ) \left(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}} \right) (K ,P ,N ) 之间仿射等价, 并且 ( K ^ , P ^ , N ^ ) \left(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}} \right) (K ,P ,N ) ( K ~ , P ~ , N ~ ) \left(\widetilde{K}, \widetilde{\mathcal{P}}, \widetilde{\mathcal{N}} \right) (K ,P ,N ) 之间插值等价, 则称有限元 ( K , P , N ) (K, \mathcal{P}, \mathcal{N}) (K,P,N) 和 有限元 ( K ~ , P ~ , N ~ ) \left(\widetilde{K}, \widetilde{\mathcal{P}}, \widetilde{\mathcal{N}} \right) (K ,P ,N ) 之间仿射插值等价.

插值插值等价有限元的例子:

  • 显然, 根据定义, 所有仿射等价的有限元都是仿射插值等价的. 取 ( ( K ^ , P ^ , N ^ ) = ( K ~ , P ~ , N ~ ) ) \left( \left(\widehat{K}, \widehat{\mathcal{P}}, \widehat{\mathcal{N}} \right) = \left(\widetilde{K}, \widetilde{\mathcal{P}}, \widetilde{\mathcal{N}} \right) \right) ((K ,P ,N )=(K ,P ,N ))
  • 对 Hermite 有限元选取合适的边以及内点, 可以做到仿射插值等价.
  • 所有的 Argyris 元不具有仿射插值等价性.

性质: 假设有限元 ( K , P , N ) (K,\mathcal{P}, \mathcal{N}) (K,P,N) ( K ~ , P ~ , N ~ ) \left(\widetilde{K}, \widetilde{\mathcal{P}}, \widetilde{\mathcal{N}} \right) (K ,P ,N ) 之间具有仿射插值等价性, 则: I ∘ F ∗ = F ∗ ∘ I \mathcal{I} \circ F^{*} = F^{*} \circ \mathcal{I} IF=FI, 其中 F F F K K K K ~ \widetilde{K} K 之间的仿射变换.

后面几天会进行有限元的编程训练, 因此文档可能会停个几天, 等到把程序清理一下再继续写这个文档.

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值