Caffe训练分类器不收敛,loss居高不下

转载:http://blog.sina.com.cn/s/blog_141f234870102w941.html
我利用Caffe 训练一个基于AlexNet 三分类分类器,将train_val.prototxt 全连接输出层 输出类别数目改为3, 训练一直不收敛, loss 很高;当把输出改成4或1000(>3) 的时候,网络可以收敛。也就是caffenet结构 输出层 类别数一定要大于我 训练类别数才可以收敛!后来查了半天才发现原因,让我泪奔。。。
原来我把图像类别 label设置成1,2,3,改成0,1,2后,最后全连接层 转出改成3就OK了。
HC-SR04超声波测距模块是一种常用的测距传感器,可以通过发送超声波脉冲并接收回波信号来测量距离。在STM32库函数版中,可以通过以下步骤来使用HC-SR04超声波测距模块: 1. 首先,需要包含"sys.h"头文件,并初始化HC_SR04超声波模块,可以使用HC_SR04_Init()函数进行初始化。\[1\] 2. 在测距之前,需要向Trig控制端输入至少10us的高电平触发信号,可以使用HC_SR04_start()函数发送20us的脉冲触发信号。\[1\] 3. HC-SR04模块内部会发送8个40KHz的方波并检测回波信号,一旦检测到回波信号,Echo接收端会输出高电平回响信号,高电平的持续时间就是超声波从发射到返回的时间。根据公式:距离=高电平时间*声速(340M/S)/2,可以计算出测得的距离。\[2\] 总结来说,使用STM32库函数版的HC-SR04超声波测距模块,需要初始化模块并发送触发信号,然后根据回响信号的高电平时间计算出距离。 #### 引用[.reference_title] - *1* *2* [STM32——库函数版——超声波测距模块](https://blog.csdn.net/qq_45844792/article/details/111215858)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [STM32连接HC-SR04超声波测距(结合STM32CubeMX和HAL库函数)](https://blog.csdn.net/wuwenbin12/article/details/118575989)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值