01背包问题

文章介绍了01背包问题的解决思路,使用动态规划的方法,通过状态转移方程f[i][j]=max(f[i−1][j],f[i−1][j−c[i]]+w[i])来求解。通过优化空间复杂度,将二维数组压缩为一维,以j=V...0的顺序更新状态,保证了在有限空间内求得最大价值。最后给出了C++实现的代码示例。
摘要由CSDN通过智能技术生成

01背包问题

题目描述

给定n个物品,第i个物品需要耗费W[i]的花费(容量),拥有C[i]的价值.你有一个容量为V的背包.
问怎么装使得所装价值最大.每个物品只有一个.

思路

每件物品只有两种可能,一种是选,一种是不选,所以分情况讨论即可。
用子问题定义状态:即f [ i ] [ j ]表示前i件物品恰放入一个容量为j的背包可以获得的最大价值。则其状态转移方程便是:

f[i][j]=max(f[i−1][j],f[i−1][j−c[i]]+w[i])

以上方法的时间和空间复杂度均为O( V ∗ N ),其中时间复杂度已经不能再优化了,但空间复杂度却可以优化到O( N )。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i = 1… N,每次算出来二维数组f [ i ] [ 0… V ]的所有值。那么,如果只用一个数组f [ 0… V ],能不能保证第i ii次循环结束后f [ j ] f[j]f[j]中表示的就是我们定义的状态f [ i ] [ j ]呢?f [ i ] [ j ]是由f [ i − 1 ] [ j ]和f [ i − 1 ] [ j − c [ i ] ]两个子问题递推而来,能否保证在推f [ i ] [ j ]时(也即在第i ii次主循环中推f [ j ] f[j]f[j]时)能够得到f [ i − 1 ] [ j ] 和f [ i − 1 ] [ j − c [ i ] ]的值呢?事实上,这要求在每次主循环中我们以j = V . . . 0的顺序推f [ j ],这样才能保证推f [ j ]时f [ j − c [ i ] ]保存的是状态f [ i − 1 ] [ j − c [ i ] ]的值。至于为什么下面有详细解释。代码如下:

for (int i = 1; i <= n; i++)
    for (int j = V; j >= 0; j--)
        f[j] = max(f[j], f[j - c[i]] + w[i]);

代码

#include<bits/stdc++.h>
using namespace std;
int c[205], f[5005], v[205], t, m;
int main()
{
	cin >> t >> m;
	for(int i = 1; i <= m; i++) cin >> c[i] >> v[i];
	for(int i = 1; i <= m; i++) {
       for(int j = t;j >= c[i]; j--) {
            f[j] = max(f[j], f[j - c[i]] + v[i]);
       }
    }
    cout<<f[t];
	return 0;
}

谢谢观看

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值