文章目录
前言
本文将介绍线性代数中非常重要也是非常基础的一个概念,叫做矩阵的逆,准确的说,是方阵(行数等于列数)的逆。
先回顾补充一下上篇1.3的一些内容,在上文中介绍了初等变换和单位矩阵的概念,当时忘记明确一点,那就是初等矩阵与单位矩阵都必然是方阵。理由也很简单,我们知道三种初等变换都只是对矩阵的行做加减数乘等操作,并不会改变矩阵的形状大小。那么由矩阵乘法的定义, m × n m\times n m×n的矩阵左乘 n × p n\times p n×p的矩阵结果是 m × p m\times p m×p的矩阵,那么我们左乘的初等变换矩阵就必须是 m = n m=n m=n的方阵了。(单位阵可以看作数乘系数为1的初等矩阵,所以包含在上述情况中了。)
一、仍然从线性方程组说起
对于一个线性方程组 A x = b Ax=b Ax=b,我们所说的消去法求解就是找到一个初等矩阵积 C = E n . . . E 2 E 1 C=E_n...E_2E_1 C=En...E2E1,用它对系数矩阵做初等变换,得到一个上三角矩阵 C A = U CA=U CA=U,从而可以很简单的求解。
现在,我们先来考虑特殊的情况,当系数矩阵是方阵时,情况会怎么样?如果系数矩阵A退化成 1 × 1 1\times1 1×1,那么我们可以通过化系数为一很简单地求解, A − 1 A x = A − 1 b A^{-1}Ax=A^{-1}b A−1Ax=A