【通信原理笔记】【一】确定信号分析——1.3 信号的功率与能量


前言

前面主要学习了傅里叶变换这一工具的含义与基本性质,现在让我们把关注点再放到信号上,我们知道电信号表示的是电压的高低,那自然就有高中物理所学的电功率与电能量的概念。而实际工程中也不可能不考虑信号的能耗能效问题,因此,对信号做能量或者功率上的分析是必要的,这也是这篇笔记的主要内容。


为了简便,本系列文章中,如果漏写积分上下限,则默认为上下限为正负无穷。

一、信号的功率与能量

1.功率信号

物理中所学的功率公式为:

P = U 2 / R P=U^2/R P=U2/R

其中 U U U是电压, R R R是电阻。元件的电阻通常来说是个确定的数值,在通信原理中为简便表示,讨论信号的功率和能量时通常默认 R = 1 R=1 R=1。因此就有简化后的通信原理中惯用的功率公式

P t = ∣ s ( t ) ∣ 2 P_t=|s(t)|^2 Pt=s(t)2

其中 s ( t ) s(t) s(t)是电信号, P t P_t Pt是该信号每个时刻的瞬时功率值。瞬时功率变化太快,要分析一个信号的整体功率水平自然还需要计算平均功率(考虑平均功率更有意义,因此通信原理中多计算的是平均功率,后续如果出现功率,默认表示的是平均功率并且简写为 P P P

P s ‾ = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 ∣ s ( t ) ∣ 2 d t \overline{P_s}=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|s(t)|^2dt Ps=limTT1T/2T/2s(t)2dt

求平均功率的时候,先取一个窗口,求窗口内的平均功率,再把窗口扩大到无穷。在实际情况中大多是周期信号,求一个周期内到平均功率即可。通过上式求出的平均功率,如果是一个有限值,即满足 0 < P s ‾ < + ∞ 0<\overline{P_s}<+\infty 0<Ps<+,则称该信号是功率信号

容易想到的是,现实中的信号一般电压也是有限值,持续时间也有限,这样计算得到的平均功率就是0。也就是说大部分所见的信号都不是功率信号。

2. 能量信号

瞬时功率对时间求积分,就是能量

E s = ∫ − ∞ + ∞ P t d t = ∫ − ∞ + ∞ ∣ s ( t ) ∣ 2 d t E_s=\int_{-\infty}^{+\infty}P_tdt=\int_{-\infty}^{+\infty}|s(t)|^2dt Es=+Ptdt=+s(t)2dt

类似的,如果求出的能量有限 0 < E s < + ∞ 0<E_s<+\infty 0<Es<+,则称该信号为能量信号。结合两个定义可以发现一个基本的规律,就是一个信号只能是能量信号或功率信号,能量有限,平均到数轴上就变成0了;平均功率有限,在整个时间轴上持续到话,能量就无穷了。

3. 信号的相关系数

从该系列笔记1.1中提过的信号的复内积运算,应该可以发现,求信号能量其实就是在求其与自身的复内积 < s ( t ) , s ∗ ( t ) > <s(t),s^*(t)> <s(t),s(t)>。因此,我们将两个不同信号也做复内积运算的话,就可以类似的得到互能量的概念:

E x y = ∫ − ∞ + ∞ x ( t ) y ∗ ( t ) d t E_{xy}=\int_{-\infty}^{+\infty}x(t)y^*(t)dt Exy=+x(t)y(t)dt

与能量不同,这个复内积有可能是负值,所以互能量其实并不是“能量”。它表示的是不同信号之间的某种相关性——这一点与线性代数中的向量内积是类似的。类似的,我们也可以定义信号之间的夹角的余弦值:

ρ x y = E x y E x E y \rho_{xy}=\frac{E_{xy}}{\sqrt{E_xE_y} } ρxy=ExEy Exy

这里我们先给 ρ x y \rho_{xy} ρxy取个名字——信号 x ( t ) x(t) x(t) y ( t ) y(t) y(t)的相关系数。当两个信号平行时(向量中平行即 x ( t ) = k y ( t ) x(t)=ky(t) x(t)=ky(t)),相关性摸值达到最大值1;反之越接近0越不相关。

二、重要定理与不等式

1.柯西-许瓦兹不等式

其实,我们并没有证明复内积满足泛函中的内积条件(虽然它确实是一种内积运算),我们也不准备在通信原理这门工程学科中引入过于抽象的数学概念,我们也就不能直接把相关系数当作夹角的余弦值。所以我们现在我们还是证一下这个 ρ x y \rho_{xy} ρxy确实是可以映射成余弦值,也就是证明其模值小于等于1,所以要证明的就是

   ⟺    − 1 ≤ ∫ − ∞ ∞ x ( t ) E x ⋅ y ∗ ( t ) E y d t ≤ 1 \iff-1\leq\int_{-\infty}^{\infty}\frac{x(t)}{\sqrt{E_x}}\cdot \frac{y^*(t)}{\sqrt E_y}dt\leq1 1Ex x(t)E yy(t)dt1

x ′ ( t ) = x ( t ) E x x'(t)=\frac{x(t)}{\sqrt{E_x}} x(t)=Ex x(t) y ′ ( t ) = y ∗ ( t ) E y y'(t)=\frac{y^*(t)}{E_y} y(t)=Eyy(t),则有

E x ′ = ∫ x ( t ) 2 E x d t = 1 = E y ′ E_{x'}=\int\frac{x(t)^2}{E_x}dt=1=E_{y'} Ex=Exx(t)2dt=1=Ey

则只需证

   ⟺    − 1 ≤ ∫ x ′ ( t ) y ′ ( t ) d t ≤ 1 \iff-1\leq\int x'(t)y'(t)dt\leq 1 1x(t)y(t)dt1

使用均值不等式

− ( x ′ ( t ) 2 + y ′ ( t ) 2 ) / 2 ≤ x ′ ( t ) y ′ ( t ) ≤ ( x ′ ( t ) 2 + y ′ ( t ) 2 ) / 2 -(x'(t)^2+y'(t)^2)/2\leq x'(t)y'(t)\leq (x'(t)^2+y'(t)^2)/2 (x(t)2+y(t)2)/2x(t)y(t)(x(t)2+y(t)2)/2

将均值不等式两边对t求积分

− 1 ≤ ∫ x ′ ( t ) y ′ ( t ) d t ≤ 1 -1\leq \int x'(t)y'(t)dt\leq1 1x(t)y(t)dt1

均值不等式的取等条件为 x ′ ( t ) = y ′ ( t ) x'(t)=y'(t) x(t)=y(t),即 x ( t ) = k y ( t ) x(t)=ky(t) x(t)=ky(t),其中k取任意值。

至此我们就证明了前面所定义的相关系数的确可以表示为两个信号的夹角的余弦值,也就和向量空间中的夹角一样可以表示两个信号的相关程度。

实际上,我们所证明的不等式,就是积分形式下的柯西-许瓦兹不等式,不等号取等条件与所证结果一致。上面证明所用到的信号 x ′ ( t ) , y ′ ( t ) x'(t),y'(t) x(t),y(t)也叫能量归一化信号,向量空间中的单位向量如出一辙。(在信号空间中,能量就类似于向量空间中的模,所以在系列笔记1.1中我们把复单频信号看成单位向量,从而构成标准正交基。)

( ∫ x ( t ) y ∗ ( t ) d t ) 2 ≤ ∫ x 2 ( t ) d t ∫ y 2 ( t ) d t (\int x(t)y^*(t)dt)^2\leq\int x^2(t)dt\int y^2(t)dt x(t)y(t)dt)2x2(t)dty2(t)dt (柯西-许瓦兹不等式)

(如果把它写成极限形式,和我们熟悉的柯西不等式看起来就很相像了)

2.帕斯瓦尔定理

虽然现在我们学了信号的能量该怎么求,但是有些情况信号的能量很难求得,比如即不是时域有限,又没有周期性的通信原理中常见的sinc信号 s ( t ) = s i n c ( t ) = s i n π t π t s(t)=sinc(t)=\frac{sin\pi t}{\pi t} s(t)=sinc(t)=πtsinπt,它的时域图像如下所示,
Sinc信号图像

然而,他的频谱频谱 S ( f ) = r e c t ( f ) = 1 , f ∈ [ − 1 / 2 , 1 / 2 ] S(f)=rect(f)=1,f\in[-1/2,1/2] S(f)=rect(f)=1,f[1/2,1/2]却很简单。如果能用频谱去求能量就好了——正好就是帕斯瓦尔定理给出的结论,任意两个信号时域复内积与频域复内积是等价的。

∫ x ( t ) y ∗ ( t ) d t = ∫ X ( f ) Y ∗ ( f ) d f \int x(t)y^*(t)dt=\int X(f)Y^*(f)df x(t)y(t)dt=X(f)Y(f)df (帕斯瓦尔定理)

只要令上式中 x ( t ) = y ( t ) x(t)=y(t) x(t)=y(t)就能得到一个信号的时域上求积分得到的能量等于频域求积分得到的能量。这样很容易就能算出上述例子中的sinc信号的能量为1。

下面我们再来证明一下帕斯瓦尔定理加深印象,我们使用傅里叶反变换,将 x ( t ) x(t) x(t)展开得到

∫ x ( t ) y ∗ ( t ) d t = ∫ ∫ X ( f ) e j 2 π f t d f y ∗ ( t ) d t \int x(t)y^*(t)dt=\int \int X(f)e^{j2\pi ft}dfy^*(t)dt x(t)y(t)dt=∫∫X(f)ej2πftdfy(t)dt

因为 f f f, t t t之间并没有函数关系,我们可以直接交换积分顺序

= ∫ X ( f ) d f ∫ y ∗ ( t ) e j 2 π f t d t =\int X(f)df\int y^*(t)e^{j2\pi ft}dt =X(f)dfy(t)ej2πftdt
= ∫ X ( f ) d f ( ∫ y ( t ) e − j 2 π f t d t ) ∗ =\int X(f)df(\int y(t)e^{-j2\pi ft}dt)^* =X(f)df(y(t)ej2πftdt)

共轭里面关于 t t t的积分其实就是y(t)的傅里叶变换,因此得到

= ∫ X ( f ) Y ∗ ( f ) d f =\int X(f)Y^*(f)df =X(f)Y(f)df

由此我们就证完了帕斯瓦尔定理。


总结

这一篇主要介绍了能量信号与功率信号的概念,信号的相关系数,以及涉及到的两个重要定理与不等式。相关系数可以用来判断两个信号的相关程度,帕斯瓦尔定理则给出了求信号能量的另一个途径。

该系列的文章每一篇篇幅都比较少,因为我觉得如果要系统过一个学科的知识,还是不宜冒进。每一个细节都应该力求理解,能推导,明白有什么意义与作用,这也是我写这些内容时无时无刻不在做的事情。

通过信号的瞬时功率,我们能很直观的看出来信号的能量在时域上的分布,下一篇将介绍一下如何分析信号的能量在频域上的分布,也就是功率谱与能量谱。

  • 25
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
连续系统的时域分析信号与系统学习中的重要部分。时域分析研究的是信号在时间域内的变化规律,常用的分析方法包括冲激响应法、单位阶跃响应法和相应方程法。 1. 冲激响应法 冲激响应法是一种基于系统输入信号的冲激函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个冲激序列的加权和,然后计算出系统对每个冲激的响应,得到系统的冲激响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为冲激序列的加权和,从而得到系统对任何输入信号的响应。 2. 单位阶跃响应法 单位阶跃响应法是一种基于系统输入信号的单位阶跃函数的响应来分析系统时域特性的方法。具体来说,将系统输入信号表示为一个单位阶跃函数的加权和,然后计算出系统对每个单位阶跃函数的响应,得到系统的单位阶跃响应函数。然后,通过线性时不变系统的特性,可以将任何输入信号都表示为单位阶跃函数的加权和,从而得到系统对任何输入信号的响应。 3. 相应方程法 相应方程法是一种基于系统微分方程的解析解来分析系统时域特性的方法。具体来说,根据系统微分方程的特性,可以得到系统的传递函数,然后通过拉普拉斯变换将输入信号和传递函数变换到频域内,最终通过反变换得到系统的时域响应。 以上三种方法都是分析连续系统时域特性的重要方法,各自适用于不同的情况。掌握这些方法可以帮助我们更好地理解和分析连续系统的时域特性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值