【通信原理笔记】【一】确定信号分析——1.3 信号的功率与能量

本文探讨了电信号中的功率与能量概念,包括功率信号、能量信号的定义,以及信号相关系数的计算方法。重点介绍了柯西-许瓦兹不等式和帕斯瓦尔定理在信号分析中的应用。后续章节将涉及信号在频域的能量分布,如功率谱和能量谱。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

前面主要学习了傅里叶变换这一工具的含义与基本性质,现在让我们把关注点再放到信号上,我们知道电信号表示的是电压的高低,那自然就有高中物理所学的电功率与电能量的概念。而实际工程中也不可能不考虑信号的能耗能效问题,因此,对信号做能量或者功率上的分析是必要的,这也是这篇笔记的主要内容。


为了简便,本系列文章中,如果漏写积分上下限,则默认为上下限为正负无穷。

一、信号的功率与能量

1.功率信号

物理中所学的功率公式为:

P = U 2 / R P=U^2/R P=U2/R

其中 U U U是电压, R R R是电阻。元件的电阻通常来说是个确定的数值,在通信原理中为简便表示,讨论信号的功率和能量时通常默认 R = 1 R=1 R=1。因此就有简化后的通信原理中惯用的功率公式

P t = ∣ s ( t ) ∣ 2 P_t=|s(t)|^2 Pt=s(t)2

其中 s ( t ) s(t) s(t)是电信号, P t P_t Pt是该信号每个时刻的瞬时功率值。瞬时功率变化太快,要分析一个信号的整体功率水平自然还需要计算平均功率(考虑平均功率更有意义,因此通信原理中多计算的是平均功率,后续如果出现功率,默认表示的是平均功率并且简写为 P P P

P s ‾ = lim ⁡ T → ∞ 1 T ∫ − T / 2 T / 2 ∣ s ( t ) ∣ 2 d t \overline{P_s}=\lim_{T\to\infty}\frac{1}{T}\int_{-T/2}^{T/2}|s(t)|^2dt Ps=limTT1T/2T/2s(t)2dt

求平均功率的时候,先取一个窗口,求窗口内的平均功率,再把窗口扩大到无穷。在实际情况中大多是周期信号,求一个周期内到平均功率即可。通过上式求出的平均功率,如果是一个有限值,即满足 0 < P s ‾ < + ∞ 0<\overline{P_s}<+\infty 0<Ps<+,则称该信号是功率信号

容易想到的是,现实中的信号一般电压也是有限值,持续时间也有限,这样计算得到的平均功率就是0。也就是说大部分所见的信号都不是功率信号。

2. 能量信号

瞬时功率对时间求积分,就是能量

E s = ∫ − ∞ + ∞ P t d t = ∫ − ∞ + ∞ ∣ s ( t ) ∣ 2 d t E_s=\int_{-\infty}^{+\infty}P_tdt=\int_{-\infty}^{+\infty}|s(t)|^2dt Es=+Ptdt=+s(t)2dt

类似的,如果求出的能量有限 0 < E s < + ∞ 0<E_s<+\infty 0<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值