1613最短路径问题

Description

平面上有n个点(N<=100),每个点的坐标均在-10000~10000之间。其中的一些点之间有连线。若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点直线的距离。现在的任务是找出从一点到另一点之间的最短路径。

Input

输入文件short.in,共有n+m+3行,其中:
第一行为一个整数n。
第2行到第n+1行(共n行),每行的两个整数x和y,描述一个点的坐标(以一个空格隔开)。
第n+2行为一个整数m,表示图中的连线个数。
此后的m行,每行描述一条连线,由两个整数I,j组成,表示第i个点和第j个点之间有连线。
最后一行:两个整数s和t,分别表示源点和目标点。

Output

输出文件short.out仅一行,一个实数(保留两位小数),表示从S到T的最短路径的长度。

Sample Input


5
0 0 
2 0
2 2
0 2
3 1
5
1 2
1 3
1 4
2 5
3 5
1 5

Sample Output


3.41

这题非常经典

1:Floyed

#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstdio>
using namespace std;
long long n,m;
double a[101][101];
int main(){
	cin>>n;
	double x[10000],y[10000];
	for(int i=1;i<=n;i++){
		cin>>x[i]>>y[i];
	} 
	memset(a,100.0,sizeof(a));
	cin>>m;
	for(int k=1;k<=m;k++){
		int i,j;
		cin>>i>>j;
	    a[i][j]=sqrt((abs(x[i]-x[j]))*(abs(x[i]-x[j]))+(abs(y[i]-y[j]))*(abs(y[i]-y[j])));
	   	a[j][i]=a[i][j];
	}
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
			 if(i!=j&&j!=k&&i!=k&&a[i][j]>a[i][k]+a[k][j])a[i][j]=a[i][k]+a[k][j];
	int x1,y1;
	cin>>x1>>y1;
	printf("%0.2lf",a[x1][y1]);
}

2.dijkstra

#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstdio>
using namespace std;
long long n,m;
double a[101][101],dis[10000],v[10000];
int main(){
	cin>>n;
	double x[10000],y[10000];
	for(int i=1;i<=n;i++){
		cin>>x[i]>>y[i];
	} 
	memset(a,100.0,sizeof(a));
	cin>>m;
	for(int k=1;k<=m;k++){
		int i,j;
		cin>>i>>j;
	    a[i][j]=sqrt((abs(x[i]-x[j]))*(abs(x[i]-x[j]))+(abs(y[i]-y[j]))*(abs(y[i]-y[j])));
	   	a[j][i]=a[i][j];
	}
	int x1,y1;
	cin>>x1>>y1;
	for(int i=1;i<=n;i++){
		dis[i]=a[x1][i];
	}
	dis[x1]=0;
	v[x1]=1;
	for(int i=1;i<n;i++){
		int k=0;
		double maxx=1000000.0;
		for(int j=1;j<=n;j++){
			if(v[j]==0&&dis[j]<maxx){
				maxx=dis[j];
				k=j;
			}
		}
		v[k]=1;
		for(int j=1;j<=n;j++){
			if(v[j]==0&&dis[j]>dis[k]+a[k][j]){
				dis[j]=dis[k]+a[k][j];
			}
		}
	}
	printf("%0.2lf",dis[y1]);
}

3.Ford

#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstdio>
using namespace std;
long long n,m;
double a[101][101],dis[10000],v[10000];
int f[1000001][3];
int main(){
	cin>>n;
	double x[10000],y[10000];
	for(int i=1;i<=n;i++){
		cin>>x[i]>>y[i];
	} 
	memset(a,100.0,sizeof(a));
	cin>>m;
	for(int i=1;i<=m;i++){
		cin>>f[i][1]>>f[i][2];
	    v[i]=sqrt(abs(x[f[i][1]]-x[f[i][2]])*abs(x[f[i][1]]-x[f[i][2]])+abs(y[f[i][1]]-y[f[i][2]])*abs(y[f[i][1]]-y[f[i][2]]));
	}
	int x1,y1;
	cin>>x1>>y1;
	memset(dis,100,sizeof(dis));
	dis[x1]=0;
	for(int i=1;i<n;i++){
		for(int j=1;j<=m;j++){
			if(dis[f[j][1]]+v[j]<dis[f[j][2]])dis[f[j][2]]=dis[f[j][1]]+v[j];
			if(dis[f[j][2]]+v[j]<dis[f[j][1]])dis[f[j][1]]=dis[f[j][2]]+v[j];
		}
	}
	printf("%0.2lf",dis[y1]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值