总结三步:安装CUDA、安装cuDNN、安装tensorflow-gpu
版本:python3.6、CUDA10.1、cuDNN v7.6.2、tensorflow-gpu 1.14、
1、首先查看你的显卡是否支持TensorFlow-GPU
A卡是肯定不支持的,TensorFlow只支持N卡,如果拿来入门学习的装个CPU版本的足矣。
但也不是所有的N卡都支持,需要支持CUDA(Compute Unified Device Architecture,统一计算设备架构)的N卡才可以,可以到下面网址查询知否支持,(建议CUDA > 3.0,否则跟CPU效果差不多)。
CUDA查询网址:https://developer.nvidia.com/cuda-gpus
2、下载CUDA
根据自己的系统对应选择、安装方式我选择exe(local)。 exe(network)相当于下载一个下载器,再由下载器下载安装包,exe(local)直接下载安装包,根据自己需要选择,网络不稳定建议选择exe(network)。
下载地址:https://developer.nvidia.com/cuda-downloads
3、安装CUDA
建议使用默认地址避免后面不必要的麻烦
4、安装cuDNN
英伟达注册很麻烦、可以直接在对应的版本上右键复制链接地址,再使用迅雷下载(亲测可行,只是一开始下载有点慢)。
下载cuDNN一定要注意对应的版本号,链接后面的for CUDA 10.1 就是对应的CUDA版本号。
下载网址:https://developer.nvidia.com/rdp/cudnn-archive
右键复制链接地址使用迅雷新建下载:
注意版本号:
5、解压cuDNN,将文件放入CUDA
将cuDNN的压缩包解压后,一起选中三个文件夹复制,然后粘贴到CUDA安装文件夹下 C:\Program Files\NVIDIA GPUComputine Toolkit\CUDA\v10.1 文件夹下。(注意:该文件夹是CUDA默认安装情况下的文件夹,非默认路径有些差异,可以参考更改)
复制:
粘贴:
6、GPU加速已经安装完毕、现在开始安装TensorFlow-GPU
我是基于anaconda环境安装的,anaconda安装见:https://blog.csdn.net/liuzongyuan1996/article/details/101105897
安装好后打开打开命令面板:
pip install -i https://pypi.mirrors.ustc.edu.cn/simple/ tensorflow-gpu==1.14.0
7、完成安装、测试
import tensorflow as tf
sess = tf.Session()
有显卡信息则说明安装成功: