笔者认为,数据的价值不仅仅只体现在企业中,个人也可以体会到数据的魅力,用技术力量探索行为密码,让大数据助跑每一个人,欢迎直筒们关注我的公众号,大家一起讨论数据中有趣的事情。
我的公众号为:livandata
流量导入到网站中后,我们并不知道网站本身有没有偷懒,为了解决这一问题,提出了网站内容效率分析,如下:
1、网站页面参与度分析:
在客户目标完成后,哪些页面参与了这一流程,页面参与流程的次数越多,说明页面的参与度越高。
主要是页面所在的流程中,页面总的UV量与该流程下产生的总目标价值的比值。
如下图:
有两个A访问,两个B访问,一个C访问,一个D访问只有A、B、C产生了价值,所以,A、B的页面参与度为5,C的参与度为10,D的参与度为0.
总体来讲:主要是看在产生价值的访问流程中某个页面一共参与了多少次。
页面参与度的指标经常在三个场景中用到:
1)热门内容;
2)内容标题;
3)内容细目;
页面参与度最主要的作用就是记录不同的页面在完成网站目标中所起的作用。基于此可以发现两个非常直接的作用:
1)页面与目标的相关性;
2)页面对目标的促进度;
参与度分析主要是分析客户访问了哪些页面,此时需要整理出页面之间的流程,使用last_page系列或者beheive_index系列,可以整理出页面流。
这个值其实是一个总的概述值,即计算网站或某个行为束中页面的UV值和网站总值或者该行为束的收益,计算均值即可。
整理行为束的方式有两个:
1)根据某个收益最终页面向上推,找到与收益值有关的所有页面,可以计算出这个收益由哪些页面得来。
2)根据某个页面向下推,找到从这个页面流向的所有页面以及最终收益结果,可以计算出这个页面的参与度。
2、页面热力图分析:
页面的热力图经常用在首页中,主要是查看首页上各个部分的点击量,来观察各个链接的被访问情况,需要的数据为:页面各个链接的点击行为数据。
主要有四个分析工具:
1)页面中点击行为的质与量分析:
量是指页面中链接被访问者点击的次数;
质是指访问者点击链接后完成目标的比率;
2)分屏的点击量分布数据分析:
主要是面对长页面时各个链接的点击量,查看长页面中点击量较高的链接是不是全部置于顶端,便于对链接进行调整。
3)不同时间范围的数据对比:
类似于环比、同比比较,主要是看同一个链接在不同时间时产生的点击量差异。
4)点击量占比分层筛选功能:
主要是在页面上根据各个链接的点击量来分层展示相应的链接。
3、页面加载时间分析:
在某个页面的跳出率非常高的情况下,可以从两个方面入手考虑,其一、有可能是营销部门流量问题,即页面的内容不能吸引客户;其二、页面设计自身存在问题,比如说加载缓慢等原因。
可以通过可视化时间分析的方式了解这方面原因,透视时间分析的横轴是时间,通常以秒的形式呈现,纵轴是客户数量:
1)正常情况下landing page的时间分布为:
维度上的顺序为:页面加载时间<点击行为时间<推出行为时间,且呈现时间较为均匀。
2)页面的内容不能吸引客户的情况:
页面加载时间和点击行为时间重合度较高,呈现顺序不均匀。
3)页面加载速度慢的情况:
在时间顺序上点击行为时间和退出行为时间重合度较高。
计算方法为:
获取每一个session,去除每个session的绝对时间刻度,将时间转换成相对刻度,即访问的第一秒、第二秒、第三秒……,作为横轴坐标,这样做可以统一各个访问的时间刻度,便于计算。
是个好方法,但是由于统计过程中需要专门记录用户每次的点击时间,页面的加载成功时间,所以对埋点的要求非常高,客户点击一个按钮,数据将request发出,在接受到response之前,客户可能会点击较多次,其中就有可能包括退出按钮。
记录的行为为:在页面加载过程中客户的点击行为及时间、页面加载成功的时间、页面加载成功后客户的点击行为。
如果客户中间的点击时间无法获取可以暂时获取先获取客户的按钮点击时间、页面加载成功时间、页面加载成功后客户的点击行为和退出点击时间,基于这样的数据可以分析页面的加载问题。
4、网站中的三种渠道分析:
网站中一般会有三种渠道:网站流量来源渠道、网站的内容渠道和网站的目标渠道。
来源渠道主要是A~DE的步骤,分析用户从哪个渠道进入到网站中,通常不仅仅会追踪到访客的登陆页还会了解用户的目的和内部访问页。
内部渠道主要是DE~G的步骤,是客户进入网站中的活动情况,即经过各个导航页进入到内容端的流程。
目标渠道主要是G~J的步骤,是进入到业务流程之后客户填写交易信息的页面直到最终成功页的流程。
5、最终产品页分析:
产品页分析主要是分析哪些产品放在哪个位置更合适,优化产品在网站上的位置。
分析网站中每个内容的热门程度、明确内容在整体中所处的位置、发现需要进行运营优化的内容、提供参考的调整建议。
热门度的评价指标可以通过用户的访问情况UV来进行统计分析。
但是UV是一个数值而已,无法进行相对比较,因此需要将UV值归一化,以方便查看每个指标的热门程度
这样运算就可以将热门程度统一到[0,1]之间了。
也可以将其正态标准化以方便查看其正态特性。
对应的图形为:
这一图形也可以理解为将内容按照访问量来进行分类,主要是分成了5类,如果扩大考虑范围,可以增加一些维度,来综合考虑用户行为,比如添加:转化率、销售单价等~
多个指标量化之后会形成一些综合的图形,比如下面的商品分布散点图:
在多指标情况下,会对某些商品进行综合评分,以方便对商品排序,评分的标准如下:
对应的加权公式为:
内容综合评分=访问量评分*访问量权重+转化率评分*转化率权重+价格评分*价格权重
权重可以通过企业的重视程度,自己定义。