XB7608AFJ单节锂电池二合一保护芯片

XB7608AFJ单节锂电池二合一保护芯片具有电池应用中所需的所有保护功能,检测电池的电压和电流,通过断开电池与负载或充电器的连接,防止电池因过充电电压、过放电电压、过放电电流和短路情况而损坏。骊微电子XB7608AFJ只需要一个外部电容。 集成了MOSFET,其RSS(ON)低至14.5mΩ典型。
在这里插入图片描述

XB7608AFJ锂电池保护芯片特性

■ 充电器反向连接保护

■ 电池反向连接保护

■ 集成相当于15.5mΩ RSS(ON)

■ 集成功率MOSFET

■ 超小型CPC5包装

■ 只需要一个外部电容器

■ 超温保护过充电流保护两步过流检测:

-过放电电流

-负载短路

■ 充电器检测

■ OV电池充电功能

■ 延迟时间是在内部生成的

■ 高精度电压

■ 低电流消耗

-操作模式:3.5u A typ

-关机模式:1.6u A typ。

■ 符合RoHS,不含铅(Pb)
在这里插入图片描述

XB7608A单节锂电池二合一保护芯片具有非常小的工作电流,可以延长电池的寿命。准缺的过充检测电压确保了安全和充分地利用,不仅适用于数字移动电话,也适用于其他需要长时间电池使用的锂离子和锂聚电池供电的信息设备。>>

%读出图像 I=imread('rice.tif'); %显示图像 figure(1),imshow(I); %显示直方图 figure(2),imhist(I,64); %原图像f(m,n)的灰度范围[a,b]线形变换为图像g(m,n),灰度范围[a’,b’] %公式:g(m,n)=a’+(b’-a’)* f(m,n)/(b-a) %increase contrast J=imadjust(I,[0.15 0.9],[0 1]); figure(3),imshow(J); %显示直方图 figure(4),imhist(J); %decrease contrast J=imadjust(I,[0 1],[0.3 0.8]); figure(5),imshow(J); %显示直方图 figure(6),imhist(J); %直方图均衡 J=histeq(I); figure(7),imshow(J); figure(8),imhist(J); %加入salt & pepper噪声 J=imnoise(I,'salt & pepper',0.02); %加入gauss噪声 %J=imnoise(I,'gauss',0.02); %加入speckle噪声 %J = IMNOISE(I,'speckle',0.02); figure(9),imshow(J); %3*3中值滤波 MFJ=medfilt2(J,[3 3]); figure(10),imshow(MFJ); %平均过滤 %AFJ=filter2(fspecial('average',5),J); %自适应滤波 I = imread('saturn.tif'); J = imnoise(I,'gaussian',0,0.005); K = wiener2(J,[5 5]); imshow(J) figure, imshow(K) %高斯过滤 AFJ=filter2(fspecial('gaussian',5,0.05),J); % sobel 锐化 %AFJ=filter2(fspecial('sobel')',J); figure(11),imshow(AFJ/255); %利用低通邻域平均模板进行平滑: I=imread('girl.bmp'); subplot(1,3,1); imshow(I); title('原图'); J=fspecial('average'); J1=filter2(J,I)/255; subplot(1,3,2); imshow(J1); title('3*3滤波'); K=fspecial('average',9); K1=filter2(K,I)/255; subplot(1,3,3); imshow(K1); title('9*9滤波'); %中值滤波和平均滤波 I=imread('girl.bmp'); J=imnoise(I,'gaussian',0,0.01); subplot(2,2,1); imshow(I); title('原图'); subplot(2,2,2); imshow(J); title('noise'); K=fspecial('average',5); K1=filter2(K,J)/255; subplot(2,2,3); imshow(K1); title('average'); L=medfilt2(J,[3 5]); subplot(2,2,4); imshow(L); title('medium'); %高通滤波边缘增强 I=imread('girl.bmp'); subplot(2,2,1); imshow(I); title('original pic'); J=fspecial('average',3); J1=conv2(I,J)/255; %J1=filter2(J,I)/255; subplot(2,2,2); imshow(J1); title('3*3lowpass'); K=fspecial('prewitt'); K1=filter2(K,J1)*5; subplot(2,2,3); imshow(K1); title('prewitt'); L=fspecial('sobel'); L1=filter2(L,J1)*5; subplot(2,2,4); imshow(L1); title('sobel'); %边缘检测 %sobel和laplacian算子 I=imread('girl.bmp'); subplot(1,3,1); imshow(I); title('original pic'); K=fspecial('laplacian',0.7); K1=filter2(K,I)/100; subplot(1,3,2); imshow(K1); title('laplacian'); L=fspecial('sobel'); L1=filter2(L,I)/200; subplot(1,3,3); imshow(L1); title('sobel'); 修改上述程序来实现以下功能:(1)改变图像的对比度,采用灰度变换,直方图均衡化; (2)观察局部平均、中值滤波、自适应滤波的效果; (3)用所学锐化算子对图像进行锐化处理。 (4)编制一个通用的边缘提取函数。通过输入不同的参数,能够实现Sobel算子、Prewitt算子、Roberts算子、LOG算子和Canny边缘检测。
最新发布
03-31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深圳市骊微电子科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值