AI小白傻傻分不清楚——RAG和 LangChain 到底有什么区别

RAG(检索增强生成)和 LangChain 的关系可以用一句话概括:LangChain 是一个框架,而 RAG 是 LangChain 支持的一种核心技术应用模式。两者结合使用时,LangChain 提供了一套完整的工具链来简化 RAG 的实现流程。以下是具体解析:

一、RAG 和 LangChain 的关系

1. 定义层面的关系

  • RAG(Retrieval-Augmented Generation)
    是一种技术范式(方法论),通过“检索外部知识 → 增强大模型输入 → 生成精准回答”的流程,提升回答的专业性和实时性。

  • LangChain
    是一个开发框架(工具箱),提供实现 RAG 所需的模块化组件(如文档加载、向量化、检索链),让开发者无需从零造轮子。

2. 流程中的协作关系

在 RAG 的实现中,LangChain 负责以下关键步骤:

复制

[1] 文档加载 → [2] 文本分块 → [3] 向量化 → [4] 存储 → [5] 检索 → [6] 生成回答
  • LangChain 的贡献

    • 提供 DocumentLoader(加载 PDF/网页/数据库等数据)

    • 内置 TextSplitter(智能分块避免语义割裂)

    • 封装 Embedding 模型(如 OpenAI、Hugging Face)

    • 集成 向量数据库(如 FAISS、Pinecone)

    • 预置 RetrievalQA 链(自动拼接检索结果和生成步骤)

3. 结合优势

  • LangChain 降低 RAG 开发门槛
    开发者无需手动处理分块策略、相似度匹配算法等复杂细节,通过框架 API 快速搭建流程。

  • RAG 扩展 LangChain 的应用场景
    赋予 LangChain 构建的 AI 应用动态知识获取能力,使其适用于客服、法律咨询等专业领域。

二、通俗类比

  • LangChain 像乐高积木套装
    提供各种标准化积木块(工具模块),开发者可以按需拼接。

  • RAG 像用乐高搭一座桥
    这座桥的结构是“检索→增强→生成”,而 LangChain 提供了搭桥所需的桥墩、桥面等预制件。

三、代码示例:用 LangChain 实现 RAG

场景:基于本地文档的问答系统

# 安装依赖:pip install langchain langchain-openai faiss-cpu python-dotenv

from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.vectorstores import FAISS
from langchain.chains import RetrievalQA
import os

# 1. 加载文档(示例:本地知识库)
loader = TextLoader("knowledge.txt")  # 准备一个包含知识的文本文件
documents = loader.load()

# 2. 文本分块(将长文档切分为语义片段)
text_splitter = RecursiveCharacterTextSplitter(
    chunk_size=500,  # 每块约500字符
    chunk_overlap=50  # 块间重叠50字符避免断句
)
chunks = text_splitter.split_documents(documents)

# 3. 向量化存储(把文本转换为数学向量)
embeddings = OpenAIEmbeddings()  # 使用OpenAI的嵌入模型
vector_db = FAISS.from_documents(chunks, embeddings)  # 存储到FAISS向量库

# 4. 构建RAG问答链
llm = ChatOpenAI(model="gpt-3.5-turbo")  # 生成用的大模型
qa_chain = RetrievalQA.from_chain_type(
    llm=llm,
    retriever=vector_db.as_retriever(search_kwargs={"k": 3}),  # 检索前3相关块
    chain_type="stuff"  # 简单拼接检索结果
)

# 5. 提问测试
question = "Python中如何创建虚拟环境?"
answer = qa_chain.invoke({"query": question})
print(answer["result"])

代码解析

  1. 文档处理

    • 从本地文件加载知识(支持 PDF、网页等格式)

    • 将长文本切割为小段,避免信息过载

  2. 向量化与检索

    • 使用 OpenAI 模型将文本转换为向量

    • FAISS 向量库快速匹配相似内容

  3. 生成回答

    • 将检索到的文本作为上下文,输入 GPT-3.5 生成最终答案

四、关键结论

  1. 依赖关系
    RAG 可以通过 LangChain 更高效地实现,但 LangChain 不只用于 RAG(还支持 Agents、记忆管理等)。

  2. 分工关系

    • LangChain = 工具箱(提供锤子、螺丝刀)

    • RAG = 用这些工具组装出的产品(如椅子)

  3. 适用场景
    当需要让大模型基于特定知识库回答时(如企业文档、最新资讯),RAG + LangChain 是黄金组合。

### RAG 工具与 LangChain 文档及教程 #### 关于检索增强生成 (RAG) 检索增强生成是一种结合了预训练语言模型外部知识库的技术,旨在提高自然语言处理任务的效果。该方法允许机器学习模型在推理过程中动态访问大量未见过的数据,从而提升响应的质量准确性[^1]。 #### 使用 LangChain 实现 RAG 功能 LangChain 提供了一套强大的工具链用于构建复杂的对话应用服务,其中包括支持 RAG 的实现方式。具体来说: - **ToolAgent**: 这是一个可以集成多种第三方服务作为插件使用的代理组件。它能帮助开发者轻松接入不同的 API 接口,比如搜索引擎或文档数据库查询接口等。 - **Tavily Retriever 定义**: 为了使这些工具能够在应用程序中被有效调用,通常会先将其封装成符合特定标准的对象形式——即所谓的 "Agent" 格式。对于 Tavily,在线搜索功能则依赖于其官方提供的 RESTful Web Service 来完成;而 Retriever 则更多是指向本地文件系统或是云存储中的结构化数据源发起请求的过程[^2]。 下面给出一段简单的 Python 代码片段展示如何使用 `search` 方法执行一次针对 San Francisco 天气状况的信息检索操作: ```python from langchain import ToolAgent, initialize_agent tools = [ { 'name': 'tavily', 'description': 'An online search engine that requires an API key.', 'type': 'online_search' }, ] agent = initialize_agent(tools=tools) response = agent.run("what is the weather in SF") print(response) ``` 这段代码展示了初始化带有 Tavily 搜索引擎能力的 Agent 并运行一个具体的查询命令的例子。需要注意的是实际部署时还需要配置相应的环境变量以提供必要的认证凭证给到各个工具模块。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试开发Kevin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值