跳频信号——单跳频信号的参数估计

本文详细介绍了单跳频信号的参数估计过程,包括利用谱图矩阵分析跳周期和中心时刻,以及使用Link方法处理时频矩阵的空缺和噪声。还展示了频率和时间参数的估计方法,并通过Matlab仿真展示了处理步骤和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、相关说明

        单跳频信号不存在同时刻下不同信号之间的交叉项干扰,但是在信号的频点转换处可能存在交叉项。针对于单跳频信号参数估计,这里的时频工具选用谱图。

        如图9所示,为单跳频信号的经过二值化后的谱图矩阵,其可视化效果如图10所示。

图9:二值化后的谱图矩阵
图10:谱图矩阵的可视化效果

        对于时间相关的参数估计,参考图9的时频矩阵,所谓的跳周期,就是时频矩阵中各跳频图案在时间轴的持续时间,所谓的中心时刻,就是时频矩阵中各跳频图案在时间轴持续时间的中心点,其示意图如图11所示。

图11:时间参数估计示意图

        对于频率相关的参数估计,参考图9的时频矩阵,跳频频隙(各跳带宽),就是时频矩阵中各跳频图案在频率轴的持续频率段,而各跳中心频率,就是时频矩阵中各跳频图案在频率轴的中心频率点,其示意图如图12所示。

2、时频矩阵的处理方法

(1)Link方法去除跳频图案的空缺点

        如图13所示,经过二值化的时频矩阵中,每个跳频图案并非完整的矩形,在其内部有很多空缺点,为了参数估计的准确性,我们需要对这些空缺点进行填补,在这里所使用的是“Link方法”。

图13:跳频图案中的空缺点示意图

        沿着时间轴进行Link方法,示意图如图14所示,其具体操作思路是:

        第一步:在每个频率点对应的时间轴一维行向量上,如果有1,则记为flag1;如果有0,则记为flag2。如果flag1和flag2同时存在并且flag2 = flag1 + 1,那么就找到了跳频图案中低值区域的起始点,即起始点时间索引为flag2。

        第二步:对flag2往后的元素进行搜索,找到0记为flag3,找到1记为flag4。如果flag3和flag4同时存在并且有flag4 = flag3 + 1、并且此时(flag3 – flag1)(跳频图案中低值区域的长度)小于某个经验阈值(设其变量为gap=6),那么则对于该时间轴跳频图案中的0区域的一维向量的索引为flag2至flag3的元素,令其为1。完成上述后,及时清除4个flag变量(令其为-1),否则容易结果出错,这是因为上一个空缺的flag变量(可能是flag1、flag2、flag3或flag4)有可能被下一个空缺的flag变量所使用,因此要避免这种情况。

        第三步:寻找下一个flag1、flag2,重复第一步、第二步。在上一行的跳频图案已经Link处理后,及时清除flag变量(令其为-1),跳转到下一行的跳频图案继续进行Link处理。

        对于沿着频率轴Link的方法,其思想与沿着时间轴一致,这里不再赘述。

(2)去除时频矩阵背景中的零星点

        如图15所示,时频矩阵背景可能会出现零星的噪声点,此时可以沿着时间轴或沿着频率轴,当某个位置是高值而前后点位置都是低值时,令该位置的元素为低值。

图15:时频矩阵背景中的零星噪声点

(3)保证任何时间点下,频率列向量只有一段连续的高值元素

        经过Link方法处理后,有可能出现同一时间点下有多个跳频图案,此时仅保留第一个跳频图案即可,如图16所示,左边的图中在某个时间点下有多个跳频图案,而经过处理后的右边的时频矩阵中则没有这种情况,方便后续进行频率参数的估计。

图16:在同一时间点下仅能有一段跳频图案

3、估计方法

(1)时间参数估计方法

        第一步:在频率轴、从频率起始点到频率结束点,根据行向量从全黑色向量到非黑色向量的变化(以及从非黑色向量到黑色向量的变化),寻找每一行跳频图案的起始频率点、结束频率点,从而得到观测时间内所有行跳频图案的起始频率点集、结束频率点集,分别记为start_f、end_f。

        第二步:对于每一行的跳频图案,计算该行的中心频率点(起始频率和结束频率的均值),在中心频率点沿着时间轴,找到各跳频图案的起始时间、结束时间。由此,我们可以得到观测时间内所有跳频图案的起始时间、结束时间。

        第三步:根据第二步所得结果,计算各跳频图案的跳周期(结束时间 – 起始时间)、各跳频图案的中心时刻(起始时间、结束时间的均值)。

        第四步:将所有跳频图案的中心时刻进行排序,计算位于时间上最靠前的图案的跳周期,那么观测时间内该电台的跳时即为:

        跳时 = 其余跳频图案的跳周期均值 – 第1跳的跳周期

(2)频率参数估计方法

        第一步:在每个时间点,沿着频率轴计算每个时间点下的中心频率、带宽,由此可以得到观测时间内所有时间点下的中心频率集合、带宽集合。

        第二步:在第一步得到的中心频率集合中,若前后两个时间点的中心频率有一定差别(比如,两个中心频率大于某个设定的频率差值f _ gap ),则记录下这前后两个时间点。由此,可以得到观测时间内所有跳的起始时间、结束时间。

        第三步:根据第二步得到各跳起始时间、结束时间,计算各跳的中心频率、各跳的带宽,进而计算该估计方法估计中心频率的均方误差。

4、仿真效果展示

(1)参数设置

注:该仿真的matlab代码已在文章开头给出。

跳频点个数:20

跳频范围:0.2 MHz – 4.8 MHz

采样率:10 MHz

时频矩阵最大频率(为采样率的二分之一):5 MHz

信噪比:30 dB

跳周期:1 ms (即1秒内有1000跳)

观测时间(未考虑跳时):20 ms

BPSK符号采样点个数:120

做一次STFT采样点个数:1024

(2)效果图

        单跳频信号时频矩阵二值化结果,如图22所示。

图22:单跳频信号二值化的时频矩阵

        单跳频信号时频矩阵最终处理结果,如图23所示。

图23:单跳频信号时频矩阵最终处理结果

        单跳频信号时间参数、频率参数的估计结果,如图24所示。

图24:单跳频信号参数估计结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值