tf.nn.ctc_loss(labels, inputs, sequence_length, preprocess_collapse_repeated=False, ctc_merge_repeated=True, time_major=True)
{#ctc_loss}
Computes the CTC (Connectionist Temporal Classification) Loss.
This op implements the CTC loss as presented in the article:
A. Graves, S. Fernandez, F. Gomez, J. Schmidhuber.Connectionist Temporal Classification: Labelling Unsegmented Sequence Datawith Recurrent Neural Networks. ICML 2006, Pittsburgh, USA, pp. 369-376.
http://www.cs.toronto.edu/~graves/icml_2006.pdf
Input requirements:
sequence_length(b) <= time for all b
max(labels.indices(labels.indices[:, 1] == b, 2))
<= sequence_length(b) for all b.
Notes:
This class performs the softmax operation for you, so inputs shouldbe e.g. linear projections of outputs by an LSTM.
The inputs
Tensor's innermost dimension size, num_classes
, representsnum_labels + 1
classes, where num_labels is the number of true labels, andthe largest value (num_classes - 1)
is reserved for the blank label.
For example, for a vocabulary containing 3 labels [a, b, c]
,num_classes = 4
and the labels indexing is {a: 0, b: 1, c: 2, blank: 3}
.
Regarding the arguments preprocess_collapse_repeated
andctc_merge_repeated
:
If preprocess_collapse_repeated
is True, then a preprocessing step runsbefore loss calculation, wherein repeated labels passed to the lossare merged into single labels. This is useful if the training labels comefrom, e.g., forced alignments and therefore have unnecessary repetitions.
If ctc_merge_repeated
is set False, then deep within the CTC calculation,repeated non-blank labels will not be merged and are interpretedas individual labels. This is a simplified (non-standard) version of CTC.
Here is a table of the (roughly) expected first order behavior:
-
preprocess_collapse_repeated=False
,ctc_merge_repeated=True
Classical CTC behavior: Outputs true repeated classes with blanks inbetween, and can also output repeated classes with no blanks inbetween that need to be collapsed by the decoder.
-
preprocess_collapse_repeated=True
,ctc_merge_repeated=False
Never learns to output repeated classes, as they are collapsedin the input labels before training.
-
preprocess_collapse_repeated=False
,ctc_merge_repeated=False
Outputs repeated classes with blanks in between, but generally does notrequire the decoder to collapse/merge repeated classes.
-
preprocess_collapse_repeated=True
,ctc_merge_repeated=True
Untested. Very likely will not learn to output repeated classes.
Args:
labels
: Anint32
SparseTensor
.labels.indices[i, :] == [b, t]
meanslabels.values[i]
storesthe id for (batch b, time t).labels.values[i]
must take on values in[0, num_labels)
.Seecore/ops/ctc_ops.cc
for more details.inputs
: 3-Dfloat
Tensor
.If time_major == False, this will be aTensor
shaped:[batch_size x max_time x num_classes]
.If time_major == True (default), this will be aTensor
shaped:[max_time x batch_size x num_classes]
.The logits.sequence_length
: 1-Dint32
vector, size[batch_size]
.The sequence lengths.preprocess_collapse_repeated
: Boolean. Default: False.If True, repeated labels are collapsed prior to the CTC calculation.ctc_merge_repeated
: Boolean. Default: True.time_major
: The shape format of theinputs
Tensors.If True, theseTensors
must be shaped[max_time, batch_size, num_classes]
.If False, theseTensors
must be shaped[batch_size, max_time, num_classes]
.Usingtime_major = True
(default) is a bit more efficient because it avoidstransposes at the beginning of the ctc_loss calculation. However, mostTensorFlow data is batch-major, so by this function also accepts inputsin batch-major form.
Returns:
A 1-D float
Tensor
, size [batch]
, containing the negative log probabilities.
Raises:
TypeError
: if labels is not aSparseTensor
.