IFC中的曲线(IfcPolyline)

博客介绍了IfcPolyline曲线,它是由一系列IfcCartesianPoint定义的直线段组成的有界线,若首尾点重合为封闭曲线,否则为开放曲线。还说明了其主要构成部分Points,以及IFC文件中曲线的定义示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    曲线(IfcPolyline)是有界线,它由一系列笛卡尔点(IfcCartesianPoint)定义的直线段组成。如果列表中第一个和最后一个点重合,则形成封闭曲线,否则形成开放曲线。

    线(IfcPolyline)主要包括:

    (1)Points:点的列表。

    下图表示有界线(IfcPolyline)以及它各个折线段的长度。

     由n个点p_{1}p_{2}p_{3}......p_{n}形成n-1个折线段,第i个折线段的参数化表示如下:

      \lambda (u) = p_{i}(i - u) + p_{i+1}(u+1-i) \ \ \ 1\leq i \leq n-1

      其中,i-1\leq u \leq i 

     IFC文件的定义如下:

#1142995= IFCCARTESIANPOINT((-158.443054394531,82.7510791992188));
#1142997= IFCCARTESIANPOINT((426.756500097656,82.7510791992188));
#1142999= IFCCARTESIANPOINT((426.756500097656,224.151043652344));
#1143001= IFCCARTESIANPOINT((-158.443054394531,224.151043652344));
#1143003= IFCCARTESIANPOINT((-158.443054394531,82.7510791992188));
#1143005= IFCPOLYLINE((#1142995,#1142997,#1142999,#1143001,#1143003,#1142995));

     #1143005表示曲线(IfcPolyline),它由6个点(IfcCartesianPoint)依次连接形成的5段折线组成,点的分别是#1142995,#1142997,#1142999,#1143001,#1143003,#1142995。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值