Day01-线性代数-行列式(DataWhale)

本文介绍了线性代数中的行列式概念,包括行列式的性质、计算方法、主要公式以及方阵行列式的特性。讨论了行列式的性质,如转置行列式相等、行变换对行列式的影响,以及如何通过化简和展开计算行列式。此外,还提到了拉普拉斯展开式、范德蒙行列式等重要公式,并阐述了方阵行列式与矩阵乘积、逆矩阵的关系。
摘要由CSDN通过智能技术生成

一、行列式

1. 性质
  • 行列式与他的转置行列式相等

  • 两行互换,值变号

  • 行列式两行或两列对应相等,行列式的值等于0

  • 某一行乘以k,相当于k乘以行列式

  • 行列式两行成比例,行列式值为0

  • 行列式的某一行的元素是两数之和,则行列式等于两个行列式之和【是和的那一行分开,其余行保持不变

  • 某一行乘以一个数,加到另一行上去,行列式不变

2. 行列式计算
  1. 利用性质化为上三角、下三角

  2. 直接展开【将某一行或列尽可能多的化出0】

  3. 观察行和列的和,累加到某一行,化出1

  4. 出现平方项要注意使用范德蒙公式

  5. 拉普拉斯展开式

3. 主要公式
  • 上(下)三角行列式的值等于主对角线元素的乘积

  • 副对角线的行列式等于 ( − 1 ) n ( n − 1 ) n (-1)^{\frac{n(n-1)}{n}} (1)nn(n1)乘以副对角线元素的乘积

  • 范德蒙行列式

D n = ∣ 1 1 . . . 1 x 1 x 2 . . . x n x 1 2 x 2 2 . . . x n 2 . . . . . . . . . . . . x 1 n − 1 x 2 n − 1 . . . x n n − 1 ∣ = ∏ n ≥ i > j ≥ 1 ( x i − x j ) D_n = \left| \begin{array}{cccc} 1 & 1 &... & 1 \\ x_1 & x_2 & ... &x_n \\ x_1^2 & x_2^2 & ... & x_n^2\\ ... & ...& ...& ...\\ x_1^{n-1} & x_2^{n-1} & ... & x_n^{n-1} \end{array} \right| = \prod_{n\geq i >j\geq 1}(x_i-x_j) Dn=1x1x12...x1n11x2x22...x2n1...............1xnxn2...xnn1=ni>j1(xixj)

  • 拉普拉斯展开式
    ( A O C B ) = ( A O O E ) ( E O O B ) ( E O C E ) ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \left( \begin{matrix} A & O\\ C & B \end{matrix} \right) = \left( \begin{matrix} A & O\\ O & E \end{matrix} \right) \left( \begin{matrix} E & O\\ O & B \end{matrix} \right) \left( \begin{matrix} E & O\\ C & E \end{matrix} \right) \\ \left| \begin{matrix} A & O\\ C & B \end{matrix} \right| = |A||B| (ACOB)=(AOOE)(EOOB)(ECOE)ACOB=AB
4. 行列式展开
  • 余子式 M i j M_{ij} Mij

  • 代数余子式 A i j A_{ij} Aij

    • A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij
  • 行列式其中第 i i i行所有元素除 ( i , j ) (i,j) (i,j) a i j a_{ij} aij外都为0,则行列式 D = a i j A i j D=a_{ij}A_{ij} D=aijAij

  • D = a i 1 A i 1 + a i 2 A i 2 + ⋅ ⋅ ⋅ + a i n A i n D=a_{i1}A_{i1}+a_{i2}A_{i2}+···+a_{in}A_{in} D=ai1Ai1+ai2Ai2++ainAin

  • a i 1 A j 1 + a i 2 A j 2 + ⋅ ⋅ ⋅ + a i n A j n = 0 , i ≠ j a_{i1}A_{j1}+a_{i2}A_{j2}+···+a_{in}A_{jn}=0,i\neq j ai1Aj1+ai2Aj2++ainAjn=0,i=j

  • ∑ k = 1 n a k i A k j = { D i = j , 0 i ≠ j \sum_{k=1}^n a_{ki}A_{kj} = \begin{cases} D & i=j,\\ 0 & i\neq j \end{cases} k=1nakiAkj={D0i=j,i=j

5. 方阵的行列式
  • ∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
  • ∣ k A ∣ = k ∣ A ∣ |kA|=k|A| kA=kA
  • ∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
  • ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1 A A ∗ = ∣ A ∣ E AA^*=|A|E AA=AE
  • ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{-1}|=|A|^{-1} A1=A1
  • n n n阶矩阵 A A A B B B相似,则 ∣ A ∣ = ∣ B ∣ |A|=|B| A=B
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值