Day04-概率论与数理统计-随机变量的数字特征与大数定律中心极限定理(DataWhale)

六、数字特征

6.1 期望
6.1.1 离散型

P { X = x k } = P k , 若 ∑ k = 1 ∞ x k P k P\{X=x_k\}=P_k,若\sum_{k=1}^{\infty}x_kP_k P{X=xk}=Pkk=1xkPk绝对收敛,则随机变量 X X X的数学期望 E ( X ) = ∑ k = 1 ∞ x k p k E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk

数学期望并不一定都存在, ∑ k = 1 ∞ x k P k \sum_{k=1}^{\infty}x_kP_k k=1xkPk需要绝对收敛

6.1.2 连续型

随机变量 X X X的概率密度函数 f ( x ) f(x) f(x),若积分 ∫ − ∞ + ∞ x f ( x ) d x \begin{aligned}\int_{-\infty}^{+\infty}xf(x)dx\end{aligned} +xf(x)dx 绝对收敛,则 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x \begin{aligned}E(X)=\int_{-\infty}^{+\infty}xf(x)dx\end{aligned} E(X)=+xf(x)dx

连续型随机变量的数学期望也不一定存在

6.1.3 随机变量函数的期望

Y = g ( X ) Y=g(X) Y=g(X) g g g是连续函数)

离散型: E ( Y ) = E ( g ( X ) ) = ∑ k = 1 ∞ g ( x k ) P k E(Y)=E(g(X))=\sum_{k=1}^{\infty}g(x_k)P_k E(Y)=E(g(X))=k=1g(xk)Pk

连续型: E ( Y ) = E ( g ( X ) ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x \begin{aligned}E(Y)=E(g(X))=\int_{-\infty}^{+\infty}g(x)f(x)dx\end{aligned} E(Y)=E(g(X))=+g(x)f(x)dx

6.1.4 二维变量函数的期望

( X , Y ) , Z = g ( X , Y ) (X,Y),Z=g(X,Y) (X,Y),Z=g(X,Y)

离散型: E ( Z ) = ∑ i ∑ j g ( x i , y j ) P i j E(Z)=\sum_i\sum_jg(x_i,y_j)P_{ij} E(Z)=ijg(xi,yj)Pij

连续型: E ( Z ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y \begin{aligned}E(Z)=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy\end{aligned} E(Z)=++g(x,y)f(x,y)dxdy

6.1.5 期望的性质
  • C 是 常 数 , E ( C ) = C C是常数,E(C)=C CE(C)=C
  • E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  • E ( X + C ) = E ( X ) + C E(X+C)=E(X)+C E(X+C)=E(X)+C
  • E ( X ± Y ) = E ( X ) ± E ( Y ) E(X\pm Y)=E(X)\pm E(Y) E(X±Y)=E(X)±E(Y)任意情况均成立
  • E ( ∑ C i X i ) = ∑ [ C i E ( X i ) ] E(\sum C_iX_i)=\sum [C_iE(X_i)] E(CiXi)=[CiE(Xi)]
  • E ( 1 n ∑ X i ) = 1 n ∑ E ( X i ) E(\frac{1}{n}\sum X_i)=\frac{1}{n}\sum E(X_i) E(n1Xi)=n1E(Xi)
  • E ( k X + b ) = k E ( X ) + b E(kX+b)=kE(X)+b E(kX+b)=kE(X)+b
  • X , Y X,Y X,Y独立,则 E ( X Y ) = E ( X ) E ( Y ) E(XY)=E(X)E(Y) E(XY)=E(X)E(Y)
6.1.6 条件期望

离散型: E ( X ∣ Y = y i ) = ∑ x i P ( X = x i ∣ Y = y i ) E(X|Y=y_i)=\sum x_iP(X=x_i|Y=y_i) E(XY=yi)=xiP(X=xiY=yi)

连续型: E ( X ∣ Y = y ) = ∫ − ∞ + ∞ x f ( x ∣ y ) d x \begin{aligned}E(X|Y=y)=\int_{-\infty}^{+\infty}xf(x|y)dx\end{aligned} E(XY=y)=+xf(xy)dx

6.2 方差

方差: D ( X ) = E ( X − E X ) 2 D(X)=E(X-EX)^2 D(X)=E(XEX)2

D ( X ) = E X 2 − ( E X ) 2 D(X)=EX^2-(EX)^2 D(X)=EX2(EX)2 【日常使用】

标准差: σ ( X ) = D ( X ) \sigma(X)=\sqrt{D(X)} σ(X)=D(X)

离散型: D ( X ) = ∑ k ( x k − E X ) 2 P k D(X)=\sum_k(x_k-EX)^2P_k D(X)=k(xkEX)2Pk

连续型: D ( X ) = ∫ − ∞ + ∞ ( x − E X ) 2 f ( x ) d x \begin{aligned}D(X)=\int_{-\infty}^{+\infty}(x-EX)^2f(x)dx\end{aligned} D(X)=+(xEX)2f(x)dx

性质:

  • D C = 0 DC=0 DC=0
  • D ( X + C ) = D X D(X+C)=DX D(X+C)=DX
  • D ( C X ) = C 2 D X D(CX)=C^2DX D(CX)=C2DX
  • D ( k X + b ) = k 2 D X D(kX+b)=k^2DX D(kX+b)=k2DX
  • 若X,Y独立,则 D ( X ± Y ) = D X + D Y D(X\pm Y)=DX+DY D(X±Y)=DX+DY;不独立时 D ( X ± Y ) = D X + D Y ± 2 C o v ( X , Y ) D(X\pm Y)=DX+DY\pm 2Cov(X,Y) D(X±Y)=DX+DY±2Cov(X,Y)
  • D X = 0 ⟺ P ( X = E X ) = 1 DX=0 \Longleftrightarrow P(X=EX)=1 DX=0P(X=EX)=1

标准化:

X ∗ = X − E X D X ⟹ E X ∗ = 0 , D X ∗ = 1 X^*=\frac{X-EX}{DX} \Longrightarrow EX^*=0,DX^*=1 X=DXXEXEX=0,DX=1

6.3 常见离散型的期望和方差
6.3.1 0-1分布

P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k(1-p)^{1-k},k=0,1 P(X=k)=pk(1p)1k,k=0,1

E X = p EX=p EX=p

D X = p q DX=pq DX=pq

D X = p − p 2 = p ( 1 − p ) = p q DX=p-p^2=p(1-p)=pq DX=pp2=p(1p)=pq

6.3.2 二项分布

P ( X = k ) = C n k p k q n − k , k = 0 , 1 , . . . P(X=k)=C_n^kp^kq^{n-k},k=0,1,... P(X=k)=Cnkpkqnk,k=0,1,...

E X = n p EX=np EX=np

D X = n p q DX=npq DX=npq

E X = ∑ k = 0 n k C n k p k q n − k = ∑ k = 0 n k n ! k ! ( n − k ) ! p k q n − k = ∑ k = 1 n n ! ( k − 1 ) ! ( n − k ) ! p k q n − k = n p ∑ k = 1 n ( n − 1 ) ! ( k − 1 ) ! ( n − k ) ! p k − 1 q n − k = n p ∑ k − 1 = 0 n − 1 C n − 1 k − 1 p k − 1 q n − k = n p ( p + q ) n − 1 = n p \begin{aligned}EX&=\sum_{k=0}^nkC_n^kp^kq^{n-k}\\&=\sum_{k=0}^{n}k\frac{n!}{k!(n-k)!}p^kq^{n-k}\\&=\sum_{k=1}^n\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k}\\&=np\sum_{k=1}^n\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}q^{n-k}\\&=np\sum_{k-1=0}^{n-1}C_{n-1}^{k-1}p^{k-1}q^{n-k}\\&=np(p+q)^{n-1}\\&=np\end{aligned} EX=k=0nkCnkpkqnk=k=0nkk!(nk)!n!pkqnk=k=1n(k1)!(nk)!n!pkqnk=npk=1n(k1)!(nk)!(n1)!pk1qnk=npk1=0n1Cn1k1pk1qnk=np(p+q)n1=np

E X 2 = n p q + n 2 p 2 EX^2=npq+n^2p^2 EX2=npq+n2p2

6.3.3 几何分布

P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , . . . P(X=k)=(1-p)^{k-1}p,k=1,2,... P(X=k)=(1p)k1p,k=1,2,...

E X = 1 p EX=\frac{1}{p} EX=p1

D X = 1 − p p 2 DX=\frac{1-p}{p^2} DX=p21p

∑ k = 1 ∞ k x k − 1 = ( ∑ k = 1 ∞ x k ) ′ = ( x 1 − x ) ′ = 1 ( 1 − x ) 2 \sum_{k=1}^\infty kx^{k-1}=(\sum_{k=1}^{\infty}x^k)'=(\frac{x}{1-x})'=\frac{1}{(1-x)^2} k=1kxk1=(k=1xk)=(1xx)=(1x)21 ∣ x ∣ < 1 |x|<1 x<1

∑ k = 1 ∞ k 2 x k − 1 = ( ∑ k = 1 ∞ k ⋅ x k ) ′ = ( x ∑ k = 1 ∞ k ⋅ x k − 1 ) ′ = ( x ( 1 − x ) 2 ) ′ = 1 + x ( 1 − x ) 3 \sum_{k=1}^\infty k^2x^{k-1}=(\sum_{k=1}^{\infty}k·x^k)'=(x\sum_{k=1}^{\infty}k·x^{k-1})'=\big(\frac{x}{(1-x)^2}\big)'=\frac{1+x}{(1-x)^3} k=1k2xk1=(k=1kxk)=(xk=1kxk1)=((1x)2x)=(1x)31+x ∣ x ∣ < 1 |x|<1 x<1

E X = ∑ k = 1 ∞ k ( 1 − p ) k − 1 p = p ⋅ 1 p 2 = 1 p EX=\sum_{k=1}^{\infty}k(1-p)^{k-1}p=p·\frac{1}{p^2}=\frac{1}{p} EX=k=1k(1p)k1p=pp21=p1

E X 2 = 2 − p p 2 EX^2=\frac{2-p}{p^2} EX2=p22p

6.3.4 泊松分布

P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2 , . . . P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... P(X=k)=k!λkeλ,k=0,1,2,...

E X = λ EX=\lambda EX=λ

D X = λ DX=\lambda DX=λ

E X = ∑ k = 0 ∞ k λ k k ! e − λ = λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! e − λ = λ ∑ M = 0 ∞ λ M ( M ) ! e − λ = λ EX=\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}e^{-\lambda}=\lambda\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}=\lambda\sum_{M=0}^{\infty}\frac{\lambda^{M}}{(M)!}e^{-\lambda}=\lambda EX=k=0kk!λkeλ=λk=1(k1)!λk1eλ=λM=0(M)!λMeλ=λ

E X 2 = ∑ k = 0 ∞ k 2 λ k k ! e − λ = ∑ k = 1 ∞ k λ k ( k − 1 ) ! e − λ = ∑ k = 1 ∞ ( k − 1 ) λ k ( k − 1 ) ! e − λ + λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! e − λ = ∑ k = 2 ∞ λ k ( k − 2 ) ! e − λ + λ = λ 2 ∑ k = 2 ∞ λ k − 2 ( k − 2 ) ! e − λ + λ = λ 2 + λ \begin{aligned}EX^2&=\sum_{k=0}^{\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda}\\&=\sum_{k=1}^{\infty}k\frac{\lambda^{k}}{(k-1)!}e^{-\lambda}\\&=\sum_{k=1}^{\infty}\frac{(k-1)\lambda^{k}}{(k-1)!}e^{-\lambda}+\lambda\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}\\&=\sum_{k=2}^{\infty}\frac{\lambda^{k}}{(k-2)!}e^{-\lambda}+\lambda\\&=\lambda^2\sum_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda}+\lambda\\&=\lambda^2+\lambda\end{aligned} EX2=k=0k2k!λkeλ=k=1k(k1)!λkeλ=k=1(k1)!(k1)λkeλ+λk=1(k1)!λk1eλ=k=2(k2)!λkeλ+λ=λ2k=2(k2)!λk2eλ+λ=λ2+λ

6.4 常见连续型的期望和方差
6.4.1 均匀分布

f ( x ) = { 1 b − a a ≤ x ≤ b 0 e l s e f(x)=\begin{cases}\frac{1}{b-a}&a\leq x\leq b \\0 & else\end{cases} f(x)={ba10axbelse

E X = a + b 2 EX=\frac{a+b}{2} EX=2a+b

D X = ( b − a ) 2 12 DX=\frac{(b-a)^2}{12} DX=12(ba)2

E X = ∫ a b x ⋅ 1 b − a d x = a + b 2 EX=\int_a^bx·\frac{1}{b-a}dx=\frac{a+b}{2} EX=abxba1dx=2a+b

E X 2 = b 2 + a b + a 2 3 EX^2=\frac{b^2+ab+a^2}{3} EX2=3b2+ab+a2

6.4.2 指数分布

f ( x ) = { λ e − λ x x > 0 0 e l s e f(x)=\begin{cases} \lambda e^{-\lambda x} & x>0 \\0 & else\end{cases} f(x)={λeλx0x>0else

E X = 1 λ EX=\frac{1}{\lambda} EX=λ1

D X = 1 λ 2 DX=\frac{1}{\lambda^2} DX=λ21

分部积分: ∫ u ( x ) v ( x ) ′ d x = u v − ∫ u ′ ( x ) v ( x ) d x \begin{aligned}\int u(x)v(x)'dx =uv-\int u'(x)v(x)dx \end{aligned} u(x)v(x)dx=uvu(x)v(x)dx

E X = ∫ 0 + ∞ x ⋅ λ e − λ x d x = − ∫ 0 + ∞ x d ( e − λ x ) = − x e − λ x ∣ 0 + ∞ + ∫ 0 + ∞ e − λ x d x = − x e − λ x ∣ 0 + ∞ − 1 λ e − λ x ∣ 0 + ∞ = 1 λ \begin{aligned}EX&=\int_{0}^{+\infty}x·\lambda e^{-\lambda x}dx\\&=-\int_{0}^{+\infty}xd(e^{-\lambda x})\\&=-xe^{-\lambda x}|_0^{+\infty}+\int_0^{+\infty}e^{-\lambda x}dx\\&=-xe^{-\lambda x}|_0^{+\infty}-\frac{1}{\lambda} e^{-\lambda x}|_0^{+\infty}\\&=\frac{1}{\lambda}\end{aligned} EX=0+xλeλxdx=0+xd(eλx)=xeλx0++0+eλxdx=xeλx0+λ1eλx0+=λ1

E X 2 = ∫ 0 + ∞ x 2 ⋅ λ e − λ x d x = − ∫ 0 + ∞ x 2 d ( e − λ x ) = − x 2 e − λ x ∣ 0 + ∞ + 2 ∫ 0 + ∞ x ⋅ e − λ x d x = 2 λ 2 \begin{aligned}EX^2&=\int_{0}^{+\infty}x^2·\lambda e^{-\lambda x}dx\\&=-\int_{0}^{+\infty}x^2d(e^{-\lambda x})\\&=-x^2e^{-\lambda x}|_0^{+\infty}+2\int_0^{+\infty}x·e^{-\lambda x}dx\\&=\frac{2}{\lambda^2}\end{aligned} EX2=0+x2λeλxdx=0+x2d(eλx)=x2eλx0++20+xeλxdx=λ22

6.4.3 正态分布

X ∼ N ( μ , σ 2 ) , Y ∼ N ( 0 , 1 ) , Y = X − μ σ X\sim N(\mu,\sigma^2),Y\sim N(0,1),Y=\frac{X-\mu}{\sigma} XN(μ,σ2),YN(0,1),Y=σXμ

E Y = 0 EY=0 EY=0

D Y = 1 DY=1 DY=1

E X = μ EX=\mu EX=μ

D X = σ 2 DX=\sigma^2 DX=σ2

E X = E ( μ + σ Y ) = σ E Y + μ = μ EX=E(\mu+\sigma Y)=\sigma EY+\mu=\mu EX=E(μ+σY)=σEY+μ=μ

D X = D ( μ + σ Y ) = σ 2 D Y = σ 2 DX=D(\mu+\sigma Y)=\sigma^2DY=\sigma^2 DX=D(μ+σY)=σ2DY=σ2

总结:
分 布 定 义 E X D X 0 − 1 P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 p p q 二 项 P ( X = k ) = C n k p k q n − k , k = 0 , 1 , . . . n p n p q 几 何 P ( X = k ) = ( 1 − p ) k − 1 p , k = 1 , 2 , . . . 1 p 1 − p p 2 泊 松 P ( X = k ) = λ k k ! e − λ , k = 0 , 1 , 2 , . . . λ λ 均 匀 f ( x ) = { 1 b − a a ≤ x ≤ b 0 e l s e a + b 2 ( b − a ) 2 12 指 数 f ( x ) = { λ e − λ x x > 0 0 e l s e 1 λ 1 λ 2 正 态 分 布 X ∼ N ( μ , σ 2 ) μ σ 2 \begin{array}{c|c|c} 分布 & 定义& EX &DX \\ \hline 0-1 & P(X=k)=p^k(1-p)^{1-k},k=0,1 & p &pq \\ 二项 & P(X=k)=C_n^kp^kq^{n-k},k=0,1,... & np &npq \\ 几何 & P(X=k)=(1-p)^{k-1}p,k=1,2,... & \frac{1}{p} & \frac{1-p}{p^2}\\ 泊松 & P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda},k=0,1,2,... & \lambda & \lambda \\ 均匀 & f(x)=\begin{cases}\frac{1}{b-a}&a\leq x\leq b \\0 & else\end{cases} & \frac{a+b}{2} & \frac{(b-a)^2}{12} \\ 指数 & f(x)=\begin{cases} \lambda e^{-\lambda x} & x>0 \\0 & else\end{cases} & \frac{1}{\lambda} & \frac{1}{\lambda^2}\\ 正态分布 & X\sim N(\mu,\sigma^2) & \mu & \sigma^2 \end{array} 01P(X=k)=pk(1p)1k,k=0,1P(X=k)=Cnkpkqnk,k=0,1,...P(X=k)=(1p)k1p,k=1,2,...P(X=k)=k!λkeλ,k=0,1,2,...f(x)={ba10axbelsef(x)={λeλx0x>0elseXN(μ,σ2)EXpnpp1λ2a+bλ1μDXpqnpqp21pλ12(ba)2λ21σ2

6.5 协方差

C o v ( X , Y ) = E [ ( X − E X ) ( Y − E Y ) ] = E ( X Y ) − E X E Y Cov(X,Y)=E[(X-EX)(Y-EY)]=E(XY)-EXEY Cov(X,Y)=E[(XEX)(YEY)]=E(XY)EXEY

C o v ( X , Y ) = E ( X Y − X E Y − Y E X + E X E Y ) = E ( X Y ) − E X E Y − E Y E X + E X E Y = E ( X Y ) − E X E Y Cov(X,Y)=E(XY-XEY-YEX+EXEY)=E(XY)-EXEY-EYEX+EXEY=E(XY)-EXEY Cov(X,Y)=E(XYXEYYEX+EXEY)=E(XY)EXEYEYEX+EXEY=E(XY)EXEY

D ( X ± Y ) = D X + D Y ± 2 C o v ( X , Y ) D(X\pm Y)=DX+DY\pm 2Cov(X,Y) D(X±Y)=DX+DY±2Cov(X,Y)

性质:

  • C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
  • C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
  • C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)
  • C o v ( C , X ) = 0 Cov(C,X)=0 Cov(C,X)=0
  • 若 X , Y 独 立 , 则 C o v ( X , Y ) = 0 若X,Y独立,则Cov(X,Y)=0 X,YCov(X,Y)=0
6.6 相关系数

ρ X Y = C o v ( X , Y ) D X D Y \rho_{XY}=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}} ρXY=DX DY Cov(X,Y)

X ∗ = X − E X D X , Y ∗ = Y − E Y D Y X^*=\frac{X-EX}{\sqrt{DX}} ,Y^*=\frac{Y-EY}{\sqrt{DY}} X=DX XEX,Y=DY YEY

C o v ( X ∗ , Y ∗ ) = E ( X ∗ Y ∗ ) − E X ∗ E Y ∗ = E [ ( X − E X D X ) ( Y − E Y D Y ) ] − E ( X − E X D X ) E ( Y − E Y D Y ) = E [ ( X − E X ) ( Y − E Y ) ] D X D Y = C o v ( X , Y ) D X D Y \begin{aligned}Cov(X^*,Y^*)&=E(X^*Y^*)-EX^*EY^*\\&=E[(\frac{X-EX}{\sqrt{DX}})(\frac{Y-EY}{\sqrt{DY}})]-E(\frac{X-EX}{\sqrt{DX}})E(\frac{Y-EY}{\sqrt{DY}})\\&=\frac{E[(X-EX)(Y-EY)]}{\sqrt{DX}\sqrt{DY}}\\&=\frac{Cov(X,Y)}{\sqrt{DX}\sqrt{DY}}\end{aligned} Cov(X,Y)=E(XY)EXEY=E[(DX XEX)(DY YEY)]E(DX XEX)E(DY YEY)=DX DY E[(XEX)(YEY)]=DX DY Cov(X,Y)

性质:

  • ∣ ρ ∣ ≤ 1 |\rho|\leq 1 ρ1

引理: [ E ( X Y ) ] 2 ≤ E X 2 ⋅ E Y 2 [E(XY)]^2\leq EX^2·EY^2 [E(XY)]2EX2EY2

g ( t ) = E ( t X − Y ) 2 = E ( t 2 X 2 − 2 t X Y + Y 2 ) = t 2 E X 2 − 2 t E X Y + E Y 2 ≥ 0 \begin{aligned}g(t)&=E(tX-Y)^2\\&=E(t^2X^2-2tXY+Y^2)\\&=t^2EX^2-2tEXY+EY^2 \geq 0\end{aligned} g(t)=E(tXY)2=E(t2X22tXY+Y2)=t2EX22tEXY+EY20

则 , Δ = ( E X Y ) 2 − 4 E X 2 E Y 2 ≤ 0 ⟹ [ E ( X Y ) ] 2 ≤ E X 2 E Y 2 则,\Delta=(EXY)^2-4EX^2EY^2 \leq0 \Longrightarrow[E(XY)]^2\leq EX^2EY^2 Δ=(EXY)24EX2EY20[E(XY)]2EX2EY2

X 1 = X − E X , Y 1 = Y − E Y 。 则 , D X = E X 1 2 , D Y = E Y 1 2 X_1=X-EX,Y_1=Y-EY。则,DX=EX_1^2,DY=EY_1^2 X1=XEX,Y1=YEYDX=EX12,DY=EY12

ρ 2 = ( E [ ( X − E X ) ( Y − E Y ) ] ) 2 D X D Y = ( E X 1 Y 1 ) 2 E X 1 2 E Y 1 2 ≤ 1 \rho^2=\frac{(E[(X-EX)(Y-EY)])^2}{DXDY}=\frac{(EX_1Y_1)^2}{EX_1^2EY_1^2}\leq 1 ρ2=DXDY(E[(XEX)(YEY)])2=EX12EY12(EX1Y1)21

  • ∣ ρ ∣ = 1 ⟺ X 与 Y 以 P = 1 成 线 性 关 系 , P ( Y = a X + b ) = 1 |\rho|=1 \Longleftrightarrow X与Y以P=1成线性关系,P(Y=aX+b)=1 ρ=1XYP=1线P(Y=aX+b)=1
    • ρ = 1 \rho=1 ρ=1,完全正相关
    • ρ = − 1 \rho =-1 ρ=1,完全负相关
  • ∣ ρ ∣ |\rho| ρ接近0: X , Y X,Y X,Y的相关性弱; ρ = 0 \rho=0 ρ=0 X , Y X,Y X,Y不存在线性关系

独立一定不相关,不相关不一定独立【相关是指线性相关;独立是指既没有线性关系,也没有非线性关系】

二维正态分布(X,Y)的独立与相关是一致的

6.7 原点矩与中心距

原点矩: E X k EX^k EXk E ( X − 0 ) k E(X-0)^k E(X0)k,期望 E X EX EX是一阶原点矩】

  • 离散型: ∑ x i k p i \sum x_i^kp_i xikpi
  • 连续型: ∫ − ∞ + ∞ x k f ( x ) d x \begin{aligned}\int_{-\infty}^{+\infty} x^kf(x)dx \end{aligned} +xkf(x)dx

中心距: E ( X − E X ) k E(X-EX)^k E(XEX)k【以 E X EX EX为中心】

  • 一阶中心距: E ( X − E X ) = 0 E(X-EX)=0 E(XEX)=0

  • 二阶中心矩: E ( X − E X ) 2 E(X-EX)^2 E(XEX)2【方差】

  • 离散型: ∑ ( x i − E X ) k p i \sum (x_i-EX)^kp_i (xiEX)kpi

  • 连续型: ∫ − ∞ + ∞ ( x − E X ) k f ( x ) d x \begin{aligned}\int_{-\infty}^{+\infty} (x-EX)^kf(x)dx \end{aligned} +(xEX)kf(x)dx

七、大数定律及中心极限定理

7.1 大数定理
7.1.1 切比雪夫不等式

大量重复试验的平均结果的稳定性

E X EX EX D X DX DX存在,对 ∀ ε > 0 \forall \varepsilon >0 ε>0 P ( ∣ X − E X ∣ ≥ ε ) ≤ D X ε 2 P(|X-EX|\geq \varepsilon)\leq\frac{DX}{\varepsilon^2} P(XEXε)ε2DX P ( ∣ X − E X ∣ < ε ) ≥ 1 − D X ε 2 P(|X-EX|< \varepsilon)\geq 1-\frac{DX}{\varepsilon^2} P(XEX<ε)1ε2DX】【落在期望以外的区域的概率较小

P ( ∣ X − E X ∣ ≥ ε ) = ∫ ∣ X − E X ∣ ≥ ε f ( x ) d x ≤ ∫ ∣ X − E X ∣ ≥ ε ( X − E X ) 2 ε 2 f ( x ) d x 【 f ( x ) ≥ 0 所 以 扩 充 区 域 后 不 等 号 成 立 】 ≤ ∫ − ∞ + ∞ ( X − E X ) 2 ε 2 f ( x ) d x = 1 ε 2 ∫ − ∞ + ∞ ( X − E X ) 2 f ( x ) d x = D X ε 2 \begin{aligned}P(|X-EX|\geq\varepsilon)&=\int_{|X-EX|\geq\varepsilon}f(x)dx\\&\leq\int_{|X-EX|\geq\varepsilon}\frac{(X-EX)^2}{\varepsilon^2}f(x)dx【f(x)\geq 0所以扩充区域后不等号成立】\\&\leq\int_{-\infty}^{+\infty} \frac{(X-EX)^2}{\varepsilon^2}f(x)dx=\frac{1}{\varepsilon^2}\int_{-\infty}^{+\infty}(X-EX)^2f(x)dx=\frac{DX}{\varepsilon^2}\end{aligned} P(XEXε)=XEXεf(x)dxXEXεε2(XEX)2f(x)dxf(x)0+ε2(XEX)2f(x)dx=ε21+(XEX)2f(x)dx=ε2DX

D X 方 差 越 小 , 波 动 越 小 , 落 在 外 面 的 概 率 越 小 ; D X 方 差 越 大 , 波 动 越 大 , 落 在 外 面 的 概 率 越 大 DX方差越小,波动越小,落在外面的概率越小;DX方差越大,波动越大,落在外面的概率越大 DXDX

ε 越 大 , 落 在 外 面 的 概 率 越 小 , ε 越 小 , 落 在 外 面 的 概 率 越 大 \varepsilon越大,落在外面的概率越小,\varepsilon越小,落在外面的概率越大 εε

7.1.2 伯努利大数定律

n 次 独 立 重 复 试 验 , A 发 生 m n 次 , 概 率 p , 频 率 m n n , 则 : l i m n → + ∞ P { ∣ m n n − p ∣ < ε } = 1 , l i m n → + ∞ P { ∣ m n n − p ∣ ≥ ε } = 0 n次独立重复试验,A发生m_n次,概率p,频率\frac{m_n}{n},则:lim_{n\rightarrow{+\infty}}P\{|\frac{m_n}{n}-p|<\varepsilon\}=1,lim_{n\rightarrow{+\infty}}P\{|\frac{m_n}{n}-p|\geq\varepsilon\}=0 nAmnpnmnlimn+P{nmnp<ε}=1limn+P{nmnpε}=0

n趋于无穷时,频率是以概率收敛于它的概率

∀ ε > 0 , ∃ N > 0 , n > N 时 , P { ∣ x n − a ∣ < ε } = 1 ⟹ l i m n → + ∞ P { ∣ x n − a ∣ < ε } = 1 \forall \varepsilon>0,\exist N>0,n>N时,P\{|x_n-a|<\varepsilon\}=1\Longrightarrow lim_{n\rightarrow{+\infty}}P\{|x_n-a|<\varepsilon\}=1 ε>0,N>0,n>NP{xna<ε}=1limn+P{xna<ε}=1

7.1.3 切比雪夫大数定律

X 1 , X 2 , . . . , X n , . . . 不 相 关 , E X i 和 D X i 都 存 在 , 方 差 是 有 界 的 D X i ≤ M , ∀ ε > 0 ⟹ l i m n → + ∞ P { ∣ 1 n ∑ i = 1 n X i − 1 n ∑ i = 1 n E X i ∣ < ε } = 1 X_1,X_2,...,X_n,...不相关,EX_i和DX_i都存在,方差是有界的DX_i\leq M,\forall \varepsilon>0 \Longrightarrow lim_{n\rightarrow{+\infty}}P\{|\frac{1}{n}\sum_{i=1}^n X_i-\frac{1}{n}\sum_{i=1}^n EX_i|<\varepsilon\}=1 X1,X2,...,Xn,...EXiDXiDXiM,ε>0limn+P{n1i=1nXin1i=1nEXi<ε}=1

推论:

X 1 , X 2 , . . . , X n , . . . 独 立 同 分 布 , E X i = μ , D X i = σ 2 , ∀ ε > 0 , ⟹ l i m n → + ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε } = 1 X_1,X_2,...,X_n,...独立同分布,EX_i=\mu,DX_i=\sigma^2,\forall \varepsilon>0,\Longrightarrow lim_{n\rightarrow{+\infty}}P\{|\frac{1}{n}\sum_{i=1}^n X_i-\mu|<\varepsilon\}=1 X1,X2,...,Xn,...EXi=μ,DXi=σ2,ε>0,limn+P{n1i=1nXiμ<ε}=1

X 1 , X 2 , . . . , X n , . . . 相 互 独 立 , 服 从 同 一 分 布 X i = { 1 发 生 0 未 发 生 且 E X i = P , D X i = P ( 1 − P ) , m n = ∑ i = 1 n X i , m n n = 1 n ∑ i = 1 n X i , X_1,X_2,...,X_n,...相互独立,服从同一分布X_i=\begin{cases} 1 & 发生\\ 0& 未发生\end{cases}且EX_i=P,DX_i=P(1-P),m_n=\sum_{i=1}^n X_i,\frac{m_n}{n}=\frac{1}{n}\sum_{i=1}^n X_i, X1,X2,...,Xn,...Xi={10EXi=P,DXi=P(1P),mn=i=1nXi,nmn=n1i=1nXi,

则 : P = E ( 1 n ∑ i = 1 n X i ) = 1 n ∑ i = 1 n E X i 则:P=E(\frac{1}{n}\sum_{i=1}^n X_i)=\frac{1}{n}\sum_{i=1}^n EX_i P=E(n1i=1nXi)=n1i=1nEXi

7.1.4 辛钦大数定理

X 1 , X 2 , . . . , X n , . . . 独 立 同 分 布 , E X i = μ , ∀ ε > 0 , ⟹ l i m n → + ∞ P { ∣ 1 n ∑ i = 1 n X i − μ ∣ < ε } = 1 X_1,X_2,...,X_n,...独立同分布,EX_i=\mu,\forall \varepsilon>0,\Longrightarrow lim_{n\rightarrow{+\infty}}P\{|\frac{1}{n}\sum_{i=1}^n X_i-\mu|<\varepsilon\}=1 X1,X2,...,Xn,...EXi=μ,ε>0,limn+P{n1i=1nXiμ<ε}=1方差无要求

平均值收敛于期望

7.2 中心极限定理

大量独立同分布的变量和的极限分布是正态分布

定理: X 1 , X 2 , . . . , X n , . . . 独 立 同 分 布 , E X i = μ , D X i = σ 2 ( 0 < σ 2 < + ∞ ) X_1,X_2,...,X_n,...独立同分布,EX_i=\mu,DX_i=\sigma^2(0<\sigma^2<+\infty) X1,X2,...,Xn,...EXi=μ,DXi=σ2(0<σ2<+)

则随机变量之和 Y = ∑ k = 1 n X i Y=\sum_{k=1}^{n}X_i Y=k=1nXi的标准化变量:

Y n = ∑ k = 1 n X i − E ( ∑ k = 1 n X i ) D ( ∑ k = 1 n X i ) = ∑ k = 1 n X i − n μ n σ Y_n=\frac{\sum_{k=1}^nX_i-E(\sum_{k=1}^nX_i)}{\sqrt{D(\sum_{k=1}^nX_i)}}=\frac{\sum_{k=1}^nX_i-n\mu}{\sqrt{n}\sigma} Yn=D(k=1nXi) k=1nXiE(k=1nXi)=n σk=1nXinμ l i m n → + ∞ F n ( x ) = l i m n → + ∞ P { ∑ k = 1 n X i − n μ n σ ≤ x } = Φ 0 ( x ) lim_{n\rightarrow{+\infty}}F_n(x)=lim_{n\rightarrow{+\infty}}P\{\frac{\sum_{k=1}^nX_i-n\mu}{\sqrt{n}\sigma}\leq x\}=\Phi_0(x) limn+Fn(x)=limn+P{n σk=1nXinμx}=Φ0(x)

⟹ \Longrightarrow Y ∼ N ( n μ , n σ 2 ) Y\sim N(n\mu,n\sigma^2) YN(nμ,nσ2) ⟹ \Longrightarrow Y ‾ ∼ N ( μ , σ 2 n ) \overline{Y} \sim N(\mu,\frac{\sigma^2}{n}) YN(μ,nσ2)

拉普拉斯定理:

随 机 变 量 Y n 服 从 二 项 分 布 B ( n , p ) , 则 : l i m n → + ∞ P { Y n − n p n p q ≤ x } = Φ 0 ( x ) 随机变量Y_n服从二项分布B(n,p),则:lim_{n\rightarrow{+\infty}}P\{\frac{Y_n-np}{\sqrt{npq}} \leq x\}=\Phi_0(x) YnB(n,p),limn+P{npq Ynnpx}=Φ0(x)

二项分布近似: { 泊 松 分 布 n 大 , n p 适 中 正 态 分 布 n 大 , n p 大 \begin{cases}泊松分布 & n大,np适中\\ 正态分布 &n大,np大 \end{cases} {nnpnnp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值