Day03-概率论与数理统计-多维随机变量及其分布(DataWhale)

五、二维随机变量及其分布

5.1 联合分布

E : 试 验 ; Ω : 样 本 空 间 ; X , Y 是 Ω 的 两 个 变 量 【 来 自 同 一 样 本 空 间 】 E:试验;\Omega:样本空间;X,Y是\Omega的两个变量【来自同一样本空间】 EΩX,YΩ

联合分布函数: F ( x , y ) = P { ( X ≤ x ) ∩ P { Y ≤ y ) } = P ( X ≤ x , Y ≤ y } F(x,y)=P\{(X\leq x)\cap P\{Y\leq y)\}=P(X\leq x,Y\leq y\} F(x,y)=P{(Xx)P{Yy)}=P(Xx,Yy}

在这里插入图片描述

性质:

  • 0 ≤ F ( x , y ) ≤ 1 0\leq F(x,y)\leq 1 0F(x,y)1

  • F ( x , y ) F(x,y) F(x,y) 不减, y y y固定, x 1 > x 2 , F ( x 1 , y ) ≥ F ( x 2 , y ) x_1>x_2,F(x_1,y)\geq F(x_2,y) x1>x2,F(x1,y)F(x2,y) x x x固定同理

  • F ( − ∞ , y ) = 0 , F ( x , − ∞ ) = 0 , F ( − ∞ , − ∞ ) = 0 , F ( + ∞ , + ∞ ) = 1 F(-\infty,y)=0,F(x,-\infty)=0,F(-\infty,-\infty)=0,F(+\infty,+\infty)=1 F(,y)=0,F(x,)=0,F(,)=0,F(+,+)=1

  • F ( x , y ) F(x,y) F(x,y)分别关于 x x x y y y 的右连续

  • x 1 < x 2 , y 1 < y 2 x_1<x_2,y_1<y_2 x1<x2,y1<y2,则

    P { x 1 < X ≤ x 2   y 1 < Y ≤ y 2 } = F ( x 2 , y 2 ) − F ( x 2 , y 1 ) − F ( x 1 , y 2 ) + F ( x 1 , y 1 ) P\{x_1<X\leq x_2\,y_1<Y\leq y_2\}=F(x_2,y_2)-F(x_2,y_1)-F(x_1,y_2)+F(x_1,y_1) P{x1<Xx2y1<Yy2}=F(x2,y2)F(x2,y1)F(x1,y2)+F(x1,y1)

5.2 边缘分布

F X ( x ) = P { X ≤ x } = F ( x , + ∞ ) = P { X ≤ x , Y < + ∞ } F_X(x)=P\{X\leq x\}=F(x,+\infty)=P\{X\leq x,Y<+\infty\} FX(x)=P{Xx}=F(x,+)=P{Xx,Y<+}

F Y ( y ) = P { Y ≤ y } = F ( + ∞ , y ) = P { X < + ∞ , Y ≤ y } F_Y(y)=P\{Y\leq y\}=F(+\infty,y)=P\{X<+\infty,Y\leq y\} FY(y)=P{Yy}=F(+,y)=P{X<+,Yy}

5.3 二维离散型的联合分布和边缘分布

P { X = x i , Y = y i } = P i j P\{X=x_i,Y=y_i\}=P_{ij} P{X=xi,Y=yi}=Pij

F ( x , y ) = P { X ≤ x , Y ≤ y } = ∑ x i ≤ x ∑ y i ≤ y P i j F(x,y)=P\{X\leq x,Y\leq y\}=\sum_{x_i\leq x}\sum_{y_i\leq y}P_{ij} F(x,y)=P{Xx,Yy}=xixyiyPij

联合分布可唯一确定边缘分布;边缘分布不能确定联合分布,但X,Y独立时可以确定联合分布

5.4 二维连续型的联合密度和边缘密度

F ( x , y ) = P { X ≤ x , Y ≤ y } = ∫ − ∞ x ∫ − ∞ y f ( s , t ) d s d t F(x,y) =P\{X\leq x,Y\leq y\}=\int_{-\infty}^x\int_{-\infty}^yf(s,t)dsdt F(x,y)=P{Xx,Yy}=xyf(s,t)dsdt

F X ( x ) = lim ⁡ y → + ∞ F ( x , y ) = ∫ − ∞ x [ ∫ − ∞ + ∞ f ( s , t ) d t ] d s F_X(x)=\lim_{y\rightarrow+\infty}F(x,y)=\int_{-\infty}^x[\int_{-\infty}^{+\infty}f(s,t)dt]ds FX(x)=limy+F(x,y)=x[+f(s,t)dt]ds

F Y ( y ) = lim ⁡ x → + ∞ F ( x , y ) = ∫ − ∞ y [ ∫ − ∞ + ∞ f ( s , t ) d s ] d t F_Y(y)=\lim_{x\rightarrow+\infty}F(x,y)=\int_{-\infty}^y[\int_{-\infty}^{+\infty}f(s,t)ds]dt FY(y)=limx+F(x,y)=y[+f(s,t)ds]dt

性质:

  • f ( x , y ) ≥ 0 f(x,y)\geq 0 f(x,y)0
  • ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) = 1 \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(x,y)=1 ++f(x,y)=1
  • ∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) \frac{\partial^2F(x,y)}{\partial x\partial y}=f(x,y) xy2F(x,y)=f(x,y)
  • G G G X Y XY XY平面的区域, P { ( X , Y ) ∈ G } = ∫ ∫ G f ( x , y ) d x d y P\{(X,Y)\in G\}=\int\int_G f(x,y)dxdy P{(X,Y)G}=Gf(x,y)dxdy

变上限积分求导: ∫ a f ( x ) g ( t ) d t = f ′ ( x ) g ( f ( x ) ) \int_a^{f(x)}g(t)dt=f'(x)g(f(x)) af(x)g(t)dt=f(x)g(f(x))

f X ( x ) = ∫ − ∞ + ∞ f ( s , t ) d t = ∫ − ∞ + ∞ f ( x , y ) d y f_X(x)=\int_{-\infty}^{+\infty}f(s,t)dt=\int_{-\infty}^{+\infty}f(x,y)dy fX(x)=+f(s,t)dt=+f(x,y)dy

f Y ( y ) = ∫ − ∞ + ∞ f ( s , t ) d s = ∫ − ∞ + ∞ f ( x , y ) d x f_Y(y)=\int_{-\infty}^{+\infty}f(s,t)ds=\int_{-\infty}^{+\infty}f(x,y)dx fY(y)=+f(s,t)ds=+f(x,y)dx

二维正态分布的边缘分布也是正态分布;两边缘分布是正态分布,二维正态分布并非是二维正态分布

5.5 条件分布

F ( x ∣ A ) = P { X ≤ x ∣ A } = P { X ≤ x , A } P { A } F(x|A)=P\{X\leq x|A\}=\frac{P\{X\leq x,A\}}{P\{A\}} F(xA)=P{XxA}=P{A}P{Xx,A}

5.5.1 离散型

P { X = x i ∣ Y = y j } = P i j P j P\{X=x_i|Y=y_j\}=\frac{P_{ij}}{P_j} P{X=xiY=yj}=PjPij

按照限制找到对应的值,然后除以条件的概率

5.5.2 连续型

已 知 ( X , Y ) 、 f ( x , y ) 、 f X ( x ) 、 f Y ( y ) , 若 f Y ( y ) > 0 , 在 Y = y 的 条 件 下 , F ( x ∣ y ) = ∫ − ∞ x f ( u , y ) f Y ( y ) d u 已知(X,Y)、f(x,y)、f_X(x)、f_Y(y),若f_Y(y)>0,在Y=y的条件下,F(x|y)=\int_{-\infty}^x\frac{f(u,y)}{f_Y(y)}du (X,Y)f(x,y)fX(x)fY(y)fY(y)>0Y=yF(xy)=xfY(y)f(u,y)du

f ( x ∣ y ) = f ( x , y ) f Y ( y ) f(x|y)=\frac{f(x,y)}{f_Y(y)} f(xy)=fY(y)f(x,y)

5.6 随机变量的独立性

f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

5.6.1 二维离散型

P { X = x i , Y = y i } = P { X = x i } P { Y = y i } P\{X=x_i,Y=y_i\}=P\{X=x_i\}P\{Y=y_i\} P{X=xi,Y=yi}=P{X=xi}P{Y=yi}

5.6.2 二维连续型

f ( x , y ) = f X ( x ) f Y ( y ) f(x,y)=f_X(x)f_Y(y) f(x,y)=fX(x)fY(y)

独立的随机变量的函数也独立

5.7 二维随机变量的函数的分布
5.7.1 二维离散型

X 1 , X 2 X_1,X_2 X1,X2 都是0-1分布,则 X 1 + X 2 X_1+X_2 X1+X2服从二项分布 B ( 2 , p ) B(2,p) B(2,p)

X 1 , X 2 X_1,X_2 X1,X2 都是泊松分布,则 X 1 + X 2 X_1+X_2 X1+X2服从泊松分布 P ( λ 1 + λ 2 ) P(\lambda_1+\lambda_2) P(λ1+λ2)

5.7.2 二维连续型

( X , Y ) , f ( x , y ) , Z = g ( X , Y ) (X,Y),f(x,y),Z=g(X,Y) (X,Y),f(x,y),Z=g(X,Y)

F Z ( z ) = P { Z ≤ z } = P { g ( X , Y ) ≤ z } = ∫ ∫ D z f ( x , y ) d x d y 【 D z = { ( x , y ) ∣ g ( x , y ) ≤ z } 】 F_Z(z)=P\{Z\leq z\}=P\{g(X,Y)\leq z\}=\int\int_{D_z}f(x,y)dxdy【D_z=\{(x,y)|g(x,y)\leq z\}】 FZ(z)=P{Zz}=P{g(X,Y)z}=Dzf(x,y)dxdyDz={(x,y)g(x,y)z}

5.7.3 Z = X + Y Z=X+Y Z=X+Y的分布

F Z ( z ) = ∫ − ∞ z [ ∫ − ∞ ∞ f ( x , t − x ) d x ] d t = ∫ − ∞ ∞ d x ∫ − ∞ z f ( x , t − x ) d t F_Z(z)=\int_{-\infty}^z[\int_{-\infty}^{\infty}f(x,t-x)dx]dt=\int_{-\infty}^{\infty}dx\int_{-\infty}^zf(x,t-x)dt FZ(z)=z[f(x,tx)dx]dt=dxzf(x,tx)dt

f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx fZ(z)=+f(x,zx)dx 或者 f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y f_Z(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy fZ(z)=+f(zy,y)dy

X , Y X,Y X,Y独立:

卷积公式

f Z ( z ) = ∫ − ∞ + ∞ f ( x , z − x ) d x = ∫ − ∞ + ∞ f X ( x ) f Y ( z − x ) d x f_Z(z)=\int_{-\infty}^{+\infty}f(x,z-x)dx=\int_{-\infty}^{+\infty}f_X(x)f_Y(z-x)dx fZ(z)=+f(x,zx)dx=+fX(x)fY(zx)dx

或者 f Z ( z ) = ∫ − ∞ + ∞ f ( z − y , y ) d y = ∫ − ∞ + ∞ f X ( z − y ) f Y ( y ) d x f_Z(z)=\int_{-\infty}^{+\infty}f(z-y,y)dy=\int_{-\infty}^{+\infty}f_X(z-y)f_Y(y)dx fZ(z)=+f(zy,y)dy=+fX(zy)fY(y)dx

X ∼ N ( μ 1 , σ 1 2 ) , Y ∼ N ( μ 2 , σ 2 2 ) , Z = X + Y , 则 : Z ∼ N ( μ 1 + μ 2 , σ 1 2 + σ 2 2 ) X\sim N(\mu_1,\sigma_1^2),Y\sim N(\mu_2,\sigma_2^2),Z=X+Y,则:Z\sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2) XN(μ1,σ12),YN(μ2,σ22),Z=X+Y,ZN(μ1+μ2,σ12+σ22)

5.7.4 Z = Y X 、 Z = X Y Z=\frac{Y}{X}、Z=XY Z=XYZ=XY

f Y X ( z ) = ∫ − ∞ + ∞ ∣ x ∣ f ( x , x z ) d x f_{\frac{Y}{X}}(z)=\int_{-\infty}^{+\infty}|x|f(x,xz)dx fXY(z)=+xf(x,xz)dx

f X Y ( z ) = ∫ − ∞ + ∞ 1 ∣ x ∣ f ( x , z x ) d x f_{XY}(z)=\int_{-\infty}^{+\infty}\frac{1}{|x|}f(x,\frac{z}{x})dx fXY(z)=+x1f(x,xz)dx

X , Y X,Y X,Y独立:

f Y X ( z ) = ∫ − ∞ + ∞ ∣ x ∣ f X ( x ) f Y ( x z ) d x f_{\frac{Y}{X}}(z)=\int_{-\infty}^{+\infty}|x|f_X(x)f_Y(xz)dx fXY(z)=+xfX(x)fY(xz)dx

f X Y ( z ) = ∫ − ∞ + ∞ 1 ∣ x ∣ f X ( x ) f Y ( z x ) d x f_{XY}(z)=\int_{-\infty}^{+\infty}\frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx fXY(z)=+x1fX(x)fY(xz)dx

5.7.5 M = m a x { X , Y } M=max\{X,Y\} M=max{X,Y} N = m i n { X , Y } N=min\{X,Y\} N=min{X,Y}

X , Y X,Y X,Y独立

M = m a x { X , Y } ≤ z = { X ≤ z , Y ≤ z } M=max\{X,Y\}\leq z=\{X\leq z,Y\leq z\} M=max{X,Y}z={Xz,Yz}

F M ( z ) = P { M ≤ z } = P { X ≤ z , Y ≤ z } = P { X ≤ z } P { Y ≤ z } = F X ( z ) F Y ( z ) F_M(z)=P\{M\leq z\}=P\{X\leq z,Y\leq z\}=P\{X\leq z\}P\{Y\leq z\}=F_X(z)F_Y(z) FM(z)=P{Mz}=P{Xz,Yz}=P{Xz}P{Yz}=FX(z)FY(z)

N = m i n { X , Y } N=min\{X,Y\} N=min{X,Y}

F N ( z ) = P { N ≤ z } = 1 − P { N > z } = 1 − P { X > z , Y > z } = 1 − P { X > z } P { Y > z } = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] F_N(z)=P\{N\leq z\}=1-P\{N>z\}=1-P\{X>z,Y>z\}=1-P\{X>z\}P\{Y>z\}=1-[1-F_X(z)][1-F_Y(z)] FN(z)=P{Nz}=1P{N>z}=1P{X>z,Y>z}=1P{X>z}P{Y>z}=1[1FX(z)][1FY(z)]

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值