Description
题目背景
热烈庆祝北京师范大学附属实验中学成立100周年!
问题描述
为了准备校庆庆典,学校招募了一些学生组成了一个方阵,准备在庆典上演出。
这个方阵是一个n*m的矩形,第i行第j列有一名学生,他有一个能力值Aij。
校长会定期检查一个p*q的方阵,询问这个方阵的学生能力值之和,或是学生能力值的最大值,或是学生能力值的最小值。由于校长不喜欢一个方阵长宽之比差太多,他每次询问的方阵的长不会超过宽的两倍。作为校庆筹办组组长的你,应该迅速并准确的回答校长所问的问题。
Input
第一行包含两个整数n,m,表示这个方阵的两条边的长度。
接下来n行,每行m个数,表示每个学生的能力值。
接下来一行包含一个整数q,表示校长的询问数。
接下来q行,每行先一个字符串s,接下来4个整数x1,y1 , x2, y2,保证
x1<=x2,y1<=y2 ,设以第x1行y1列为左上角,第x2行y2列为右下角的方阵为P。(本题为0下标)
若字符串内容为“SUM”,请求出P中所有学生的能力值之和。
若字符串内容为“MAX”,请求出P中所有学生的能力值的最大值。
若字符串内容为“MIN”,请求出P中所有学生的能力值的最小值。
Output
输出总共q行,第i行的数为第i组询问对应的答案ansi
Sample Input
3 3
1 2 3
4 5 6
7 8 9
3
SUM 0 0 1 1
MAX 0 0 2 2
MIN 0 1 1 1
Sample Output
12
9
2
样例说明
对于第一组询问,能力值之和为1+2+4+5=12。
对于第二组询问,能力值最大的位置为第2行第2列。
对于第三组询问,能力值最小的位置为第0行第1列。
Data Constraint
对于40%的数据,n,m<=200,q<=200
对于60%的数据,n,m<=300,q<=100000
对于80%的数据,n,m<=500,q<=500000
对于100%的数据,n,m<=800,q<=500000, 0<=Aij<=3000, 每个询问的方阵的长不超过宽的两倍
Solution
矩阵和前缀和处理,矩阵最值用二维 RMQ 维护即可。
设 F[i][j][k] 从 (i,j) 向下延伸 2k 、向右延伸 2k 的最大值,最小值同理。
Code
#include<cstdio>
#include<cmath>
using namespace std;
const int N=801;
int a[N][N],sum[N][N],f[N][N][10],g[N][N][10],p[11];
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
inline int write(int x)
{
if(x>9) write(x/10);
putchar(x%10+'0');
}
inline int max(int x,int y)
{
return x>y?x:y;
}
inline int min(int x,int y)
{
return x<y?x:y;
}
int main()
{
int n=read(),m=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
{
f[i][j][0]=g[i][j][0]=a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
for(int i=p[0]=1;i<=10;i++) p[i]=p[i-1]<<1;
for(int k=1;k<10;k++)
for(int i=1;i<=n && i+p[k]-1<=n;i++)
for(int j=1;j<=m && j+p[k]-1<=m;j++)
{
f[i][j][k]=max(f[i][j][k-1],f[i][j+p[k-1]][k-1]);
f[i][j][k]=max(f[i][j][k],max(f[i+p[k-1]][j][k-1],f[i+p[k-1]][j+p[k-1]][k-1]));
g[i][j][k]=min(g[i][j][k-1],g[i][j+p[k-1]][k-1]);
g[i][j][k]=min(g[i][j][k],min(g[i+p[k-1]][j][k-1],g[i+p[k-1]][j+p[k-1]][k-1]));
}
int q=read();
while(q--)
{
char ch=getchar();
while(ch!='X' && ch!='N' && ch!='U') ch=getchar();
int x1=read()+1,y1=read()+1,x2=read()+1,y2=read()+1;
if(ch=='U')
{
write(sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1]),putchar('\n');
continue;
}
int ans=ch=='N'?3000:0,z=min(log2(x2-x1+1),log2(y2-y1+1));
if(ch=='X')
{
for(int yy=y1;yy+p[z]<=y2;yy+=p[z]) ans=max(ans,max(f[x1][yy][z],f[x2-p[z]+1][yy][z]));
for(int xx=x1;xx+p[z]<=x2;xx+=p[z]) ans=max(ans,max(f[xx][y1][z],f[xx][y2-p[z]+1][z]));
ans=max(ans,max(f[x1][y1][z],f[x1][y2-p[z]+1][z]));
ans=max(ans,max(f[x2-p[z]+1][y1][z],f[x2-p[z]+1][y2-p[z]+1][z]));
}else
{
for(int yy=y1;yy+p[z]<=y2;yy+=p[z]) ans=min(ans,min(g[x1][yy][z],g[x2-p[z]+1][yy][z]));
for(int xx=x1;xx+p[z]<=x2;xx+=p[z]) ans=min(ans,min(g[xx][y1][z],g[xx][y2-p[z]+1][z]));
ans=min(ans,min(g[x1][y1][z],g[x1][y2-p[z]+1][z]));
ans=min(ans,min(g[x2-p[z]+1][y1][z],g[x2-p[z]+1][y2-p[z]+1][z]));
}
write(ans),putchar('\n');
}
return 0;
}