语音合成(TTS)论文优选:Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and Cr

本文介绍Google2019年的研究,聚焦于使用单语言语料实现多语言语音合成和跨语言语音克隆。通过变分自编码器学习音频隐含变量,采用领域对抗训练(DAT)解耦语言信息和说话人特征。实验表明,使用phonemes作为输入格式、DAT模块和残差编码器能提高合成效果。该系统展示了良好的语言迁移能力,为多语言TTS及语音克隆提供新途径。
摘要由CSDN通过智能技术生成

声明:语音合成(TTS)论文优选系列主要分享论文,分享论文不做直接翻译,所写的内容主要是我对论文内容的概括和个人看法。如有转载,请标注来源。

欢迎关注微信公众号:低调奋进

Learning to Speak Fluently in a Foreign Language: Multilingual Speech Synthesis and Cross-Language Voice Cloning

本文章是google公司在2019.07.24更新的文章,主要做multilingual speech synthesis 的工作,具体的文章链接https://arxiv.org/pdf/1907.04448.pdf 

(我之所以写这篇文章,因为我目前做的一个方向也是multilingual & code switch,近期想总结一下该方向的发展状况,而这篇该领域最经典的文章是绕不过去的。先写这篇文章,后续整理该方向综述会更简便一些)

1 研究方向

 现在的TTS模型不仅需要支持多种语言,还要支持语言之间的切换自然。然而,大部分企业手中拥有不同说话人不同语言的语料,要想获取同一说话人不同语言的语料需要花费昂贵的成本。本文章使用单语言语料设计了支持多语言跨语言的TTS,而且可以支持语言切换。(研究背景实在不想再阐述了,其实目的只有一个:在缺乏同一个说话人拥有多种语言训练语料前提下,使该说话人的TTS模型支持多语言)

2 详细设计

详细的系统的架构如图1所示。这个架构非常经典,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫永强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值