声明:语音信号处理(DSP)论文优选系列主要分享论文,分享论文不做直接翻译,所写的内容主要是我对论文内容的概括和个人看法。如有转载,请标注来源。
欢迎关注微信公众号:低调奋进
Performance Analysis of Several Pitch Detection Algorithms on Simulated and Real Noisy Speech Data
该篇文章是2017年对提基频Pitch Detection Algorithms算法的对比总结,具有很好的参考价值,具体的文章链接
https://hal.inria.fr/hal-01585554/document
1 算法对比
Pitch Detection Algorithms算法主要分为三类:基于时域算法,基于频域算法和混合算法。本文章对这三类的集中算法在干净数据和带噪声的数据集上进行对比测试,比较那种算法的准确度较高,本文选取的算法如table 1所示,具体不做一一介绍。
首先,看一下在干净数据集上的测试结果,其结果如图1所示,所有的算法均值(蓝色)大部分分布在5%~8%,其中ACF(praat)和RAPT(SPTK)的效果相对较好。
其次在构造带噪声数据上的对比,图2显示总体效果较好RAPT(SPTK)。table 2展示较好算法的具体值。
接下来在现实中带噪数据的对比,总体reaper和rapt(sptk)的效果最好。图四对比噪声类型对结果的影响,其结果一目了然,在此不做具体阐述。