线性代数
liyu355
这个作者很懒,什么都没留下…
展开
-
子空间和矩阵平移
计算机图形学和矩阵紧密相连,但是物体的平移并不直接对应矩阵乘法。因此引入了齐次坐标的概念。R2中每个点(x,y)可以对应R3中的(x,y,1),他对对应于xy平面上方1单位的平面上。我们称(x,y)有齐次坐标(x,y,1)有了齐次坐标之后,就可以用来进行平移操作了。如需要做一个操作:x+h,y+k,可以写为:[1 0 h] [x] [x+h][0 1 k] [y] = [y+k]...原创 2019-05-01 19:26:01 · 774 阅读 · 0 评论 -
线性代数公式
坐标系:定理7 (唯一表示定理)令B={b1,…,bn}是向量空间V的一个基,则对V中每个向量x,存在唯一的一组数c1,…,cn使得 x=c1b1+…+cnbn的权c1,c2…,cn若c1,…,cn是x的B-坐标,则Rn中的向量[x]b = [c1,c2…cn]T 是x相对于B的坐标向量。定理9 若向量空间V具有一组基B = {b1,…,bn},则V中任意包含多余n个向量的集合一定线性...原创 2019-05-26 01:07:22 · 1181 阅读 · 0 评论 -
列空间和零空间
定理2 mn矩阵A的零空间是Rn的一个子空间,等价地,m个方程,n个未知数的齐次线性方程组Ax=0的全体解的集合是Rn的子空间。(需要注意的是,这里用的是一个齐次方程组)矩阵的列空间定义:mn矩阵的列空间(记为colA)是由A的列的所有线性组合组成的集合,若A=[a1,…,an], 则colA = Span{a1,…,an}定理3 m*n矩阵A的列空间是Rm的一个子空间。定义:令H是向...原创 2019-05-19 23:32:45 · 3696 阅读 · 0 评论 -
行列式公式
行列式定理1:n*n矩阵A的行列式可按任意行或列的余因子展开式来计算。按第i行展开用Cij = (-1)i+j det Aij 式给出的余因子写法可写成:det A = ai1Ci1 + ai2Ci2 +…+ainCin按第j列的余因子展开式为:detA = a1jC1j + a2jC2j +… + anjCnj(i,j)位置的余因子中加号或减号取决于aij在矩阵中的位置,而与ai...原创 2019-05-06 22:14:49 · 10364 阅读 · 0 评论 -
向量空间
向量空间:定义:一个向量空间是由一些被称为向量的对象构成的非空集合V,在这个集合上定义两个运算,称为加法和标量乘法(标量取实数),服从以下公理,这些公理必须对V中所有向量u,v,w及所有标量c和d都成立:1 u,v之和表示为u+v,仍在V中2 u+v = v+u3 (u+v)+w = u + (v + w)4 V中存在一个零向量0,使得u+0=u5 对V中每个向量u,存在V中向量-u,...原创 2019-05-19 00:55:21 · 770 阅读 · 0 评论 -
维数和秩
定理14如果一矩阵A有n列,则rankA + dim NulA = n(dim 表示维数 NulA 表示Ax = 0时的解的集合)定理15 (基定理)设H是Rn的p维子空间,H中的任何恰好由p个成员组成的线性无关集构成H的一个基。并且,H中任何生成H的p个向量集也构成H的一个基。秩与可逆矩阵定理定理(可逆矩阵定理)设A是一个m*n矩阵,则下面的每个命题与A是可逆矩阵的命题等价:m...原创 2019-05-06 00:32:46 · 7124 阅读 · 0 评论 -
子空间的基
m*n矩阵A的零空间是Rn的子空间。等价地,n个未知数的m个齐次线性方程的解的全体是Rn的子空间。这个就是零空间的意义。子空间的基。因为子空间的向量是无穷的,我们用来表示一个子空间的时候,不可能枚举所有的向量,因此就需要一个有限的集合来进行描叙。而这个集合一定是线性无关的。对于零空间的基,一般会留下自由变量所在的列来求解。而对于列空间的基,则是主元列构成的。...原创 2019-05-04 00:22:28 · 5030 阅读 · 0 评论 -
线性变换
线性变换的实质,就是加入一个A,使得对于Ax=b中的x通过Ax的形式找到一个解的集合。而线性变换的矩阵,实际上就是为了对Ax=b的计算式中,求到A的结果。那么如何去求得A呢因为x=x;xI = x;那么如果能知道xI为多少。那么我们就能找到Ax = b中A会为多少,因为T(x) = Ax = AxI = T(I)x那么就会有类似的:T(I)x = [T(e1) T(e2)]x ,因...原创 2019-04-19 09:17:33 · 3174 阅读 · 0 评论 -
线性代数的公式笔记
1、线性相容:有1个或多个解定理4:设A是m*n矩阵,则下列命题是逻辑上等价的,也就是说,对某个A,他们都成立或都不成立:a 对Rm中每个b,方程Ax=b有解b Rm中的每个b都有A的列的一个线性组合c A的各列生成Rmd A在每一行都有一个主元位置定理5:若A是m*n矩阵,u和v是Rn中的向量,c是标量,则a A(u+v) = Au + Avb A(cu) = c(Au)....原创 2019-04-19 07:59:50 · 929 阅读 · 0 评论 -
线性代数空间公式
定理10 若向量空间V有一组基含有n个向量,则V的每一组基一定恰好含有n个向量定义 若V由一个有限集生成,则V称未有限维的,V的维数写成dimV,是V的基中含有向量的个数,零向量空间{0}的维数定义为零。如果V不是由一有限集生成,则V称为无穷维的。定理11 令H是有限维向量空间V的子空间,若有需要的话,H中任一线性无关集均可以扩充称为H的一个基,H也是有限维的并且 dimH <= dim...原创 2019-05-26 19:35:58 · 3325 阅读 · 0 评论