一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大量的考察技巧性的习题,有些题相当有难度,第一卷又没有提供习题答案。我试着解了一小部分习题,放到这里,供有需要的同学参考。能力有限,有些题确实搞不定,有些题给的答案可能是错的。所以仅供参考。
柯朗微积分与数学分析习题选解(1.2 节 d)
第 3 题
反证法: 假设在 [0,1] 区间内,存在另外一点 x0 满足 f(x)=A≠1/2 , 我们不妨设 A<1/2 .
那么 存在一个无理数
B
满足
由于
f(x)
在
[0,x0]
上是连续的,所以必然存在一个点
0≤x1≤x0
满足
f(x1)=B
这与
f(x)
只取有理数值矛盾.所以
f(x)≡1/2
第 4 题
(a)
当
x0
是有理数时,取
ε=0.5
我们知道
x0
的任意小的临域内都存在至少一个无理数
x
使得
当
x0
是无理数时,取
ε=0.5
我们知道
x0
的任意小的临域内都存在至少一个有理数
x
使得
(b)
当
x0
是有理数时,
x0=p/q
,取
ε=12q
, 我们知道
x0
的任意小的临域内都存在至少一个无理数
x
使得
当
我们定义
an
为距离
x0
最近的分母为
n
的有理数, 并定义
我们取 δ=min(b1,b2,…,bm) .
那么当
|x−x0|<δ
时,在这个邻域内不存在分母小于
m
的有理数,所以
所以在 x 取无理数的点上是连续的.
第 5 题
所以
所以
所以对于
x
的有理值,
如果
f(x)
是连续的。那么当
x
是有理数时,自然有
当
x
是无理数时,这时存在一个有理数序列
因为
f(x)
是连续的,那么
所以 f(x)=cx
第 6 题
(a) 如果 f(x)=xn , 试求 δ 使得 |x−ξ|<δ 时满足: |f(x)−f(ξ)|<ε
当
|x−ξ|<1
时,有
|x|<|ξ|+1
, 所以有
所以对于任意小的
ε>0
只要取
那么当 |x−ξ|≤δ 时,有 |f(x)−f(ξ)|<ε
(b) 如果 f(x) 是任意多项式:
其中 an≠0 , 试求 δ 使得 |x−ξ|<δ 时满足: |f(x)−f(ξ)|<ε
当
|x−ξ|<1
时,有
|x|<|ξ|+1
, 设
A=max(|an|,|an−1|,…,|a1|)
所以有
所以对于任意小的
ε>0
只要取
那么当 |x−ξ|≤δ 时,有 |f(x)−f(ξ)|<ε