柯朗微积分与数学分析习题选解(1.2 节 d)

一直在读《陶哲轩实分析》,陶的书非常的严谨,环环相扣,但是也有个缺点就是计算性的例子和应用方面的例子太少了。所以就又找了本柯朗的《微积分与数学分析》搭配着看。柯朗的书的习题与陶的风格完全不同,里面有大量的考察技巧性的习题,有些题相当有难度,第一卷又没有提供习题答案。我试着解了一小部分习题,放到这里,供有需要的同学参考。能力有限,有些题确实搞不定,有些题给的答案可能是错的。所以仅供参考。

柯朗微积分与数学分析习题选解(1.2 节 d)

第 3 题

反证法: 假设在 [0,1] 区间内,存在另外一点 x0 满足 f(x)=A1/2 , 我们不妨设 A<1/2 .

那么 存在一个无理数 B 满足 A<B<1/2
由于 f(x) [0,x0] 上是连续的,所以必然存在一个点 0x1x0 满足 f(x1)=B
这与 f(x) 只取有理数值矛盾.所以 f(x)1/2

第 4 题

(a)
x0 是有理数时,取 ε=0.5 我们知道 x0 的任意小的临域内都存在至少一个无理数 x 使得 f(x)=0,所以 |f(x)f(x0)|=1>0.5 .
x0 是无理数时,取 ε=0.5 我们知道 x0 的任意小的临域内都存在至少一个有理数 x 使得 f(x)=1,所以 |f(x)f(x0)|=1>0.5 .

(b)
x0 是有理数时, x0=p/q ,取 ε=12q , 我们知道 x0 的任意小的临域内都存在至少一个无理数 x 使得 f(x)=0,所以 |f(x)f(x0)|=1q>12q . 所以在 x 取有理数的点上是不连续的.

x0 是无理数时, f(x)=0 ,对于任意小的 ε>0 我们都可以找到一个足够大的自然数 m 满足 ε>1m.

我们定义 an 为距离 x0 最近的分母为 n 的有理数, 并定义 bn=|anx0| .

我们取 δ=min(b1,b2,,bm) .

那么当 |xx0|<δ 时,在这个邻域内不存在分母小于 m 的有理数,所以

|f(x)f(x0)|<1m<ε

所以在 x 取无理数的点上是连续的.

第 5 题

f(x+y)=f(x)+f(y)

所以

f(0)=f(0)+f(0)=0f(x)=f(x)f(n)=nf(1)

所以

f(pq)=1qf(p)=pqf(1)

所以对于 x 的有理值,f(x)=xf(1)

如果 f(x) 是连续的。那么当 x 是有理数时,自然有 f(x)=xf(1)
x 是无理数时,这时存在一个有理数序列 {xn} 满足 limnxn=x
因为 f(x) 是连续的,那么

f(x)=limnf(xn)=limnxnf(1)=xf(1)

所以 f(x)=cx

第 6 题

(a) 如果 f(x)=xn , 试求 δ 使得 |xξ|<δ 时满足: |f(x)f(ξ)|<ε

|xξ|<1 时,有 |x|<|ξ|+1 , 所以有

|f(x)f(ξ)|==<|xnξn||xξ||xn1+xn2ξ+xn3ξ2++xξn2+ξn1|n|xξ|(|ξ|+1)n1

所以对于任意小的 ε>0 只要取

δ=min(1,εn(|ξ|+1)n1)

那么当 |xξ|δ 时,有 |f(x)f(ξ)|<ε

(b) 如果 f(x) 是任意多项式:

f(x)=anxn+an1xn1++a1x+a0

其中 an0 , 试求 δ 使得 |xξ|<δ 时满足: |f(x)f(ξ)|<ε

|xξ|<1 时,有 |x|<|ξ|+1 , 设 A=max(|an|,|an1|,,|a1|) 所以有

|f(x)f(ξ)|=<<|an(xnξn)+an1(xn1ξn1)++a1(xξ)||xξ|(|an(|ξ|+1)n1n|+|an1(|ξ|+1)n2(n1)|++|a1(|ξ|+1)|)|xξ|n2(|ξ|+1)n1A

所以对于任意小的 ε>0 只要取

δ=min(1,εAn2(|ξ|+1)n1)

那么当 |xξ|δ 时,有 |f(x)f(ξ)|<ε

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值