关于三次方程的一道题

三次方程的一道题

前几天在水木社区数学版看到了一道题,题目如下:

x 3 − 3 x − 1 = 0 x^3-3x-1=0 x33x1=0 有三个实根从小到大依次 x 1 x_1 x1 x 2 x_2 x2 x 3 x_3 x3,求证:
x 3 2 − x 2 2 = x 3 − x 1 x_3^2-x_2^2=x_3-x_1 x32x22=x3x1

这道题难度挺大的,我是在其他人的提示下才找到了解法。这里记录一下解题过程。

首先需要估计一下这三个根的数值。可以画个图:
在这里插入图片描述

可以看到这三个根都在 [ − 2 , 2 ] [-2, 2] [2,2] 这个区间内。那么我们可以设 x = 2 c o s α x = 2 cos \alpha x=2cosα。 带入方程,得:

8 c o s 3 α − 6 c o s α − 1 = 0 8 cos^3 \alpha - 6 cos \alpha - 1 = 0 8cos3α6cosα1=0

我们知道三角函数有个三倍角公式:
c o s 3 α = 4 c o s 3 α − 3 c o s α cos 3\alpha = 4 cos^3 \alpha - 3 cos \alpha cos3α=4cos3α3cosα

利用三倍角公式,可以化简为:

c o s 3 α = 1 2 cos 3\alpha = \frac{1}{2} cos3α=21

所以:
α 1 = π 9 , α 2 = 7 π 9 , α 3 = 13 π 9 \alpha_1 = \frac{\pi}{9}, \alpha_2 = \frac{7 \pi}{9}, \alpha_3 = \frac{13 \pi}{9} α1=9π,α2=97π,α3=913π

换算成度数就是:
α 1 = 2 0 ∘ , α 2 = 14 0 ∘ , α 3 = 26 0 ∘ \alpha_1 = 20 ^\circ, \alpha_2 = 140 ^\circ, \alpha_3 = 260 ^\circ α1=20,α2=140,α3=260

按照大小来排就是:
x 1 = 2 c o s 7 π 9 , x 2 = 2 c o s 13 π 9 , x 3 = 2 c o s π 9 x_1 = 2 cos \frac{7 \pi}{9}, x_2= 2 cos \frac{13 \pi}{9}, x_3 = 2 cos \frac{\pi}{9} x1=2cos97π,x2=2cos913π,x3=2cos9π

那么剩下的就是要验证:

2 c o s 2 π 9 − 2 c o s 2 13 π 9 = c o s π 9 − c o s 7 π 9 2 cos^2 \frac{\pi}{9} - 2 cos^2 \frac{13 \pi}{9} = cos \frac{\pi}{9} - cos \frac{7 \pi}{9} 2cos29π2cos2913π=cos9πcos97π
由二倍角公式,有:

2 c o s 2 π 9 − 2 c o s 2 13 π 9 = c o s 2 π 9 − c o s 8 π 9 = ( c o s 2 π 9 + c o s 7 π 9 ) − c o s 7 π 9 − ( c o s π 9 + c o s 8 π 9 ) + c o s π 9 = 2 c o s π 2 c o s 5 π 18 − c o s 7 π 9 − c o s π 2 c o s 7 π 18 + c o s π 9 = c o s π 9 − c o s 7 π 9 2 cos^2 \frac{\pi}{9} - 2 cos^2 \frac{13 \pi}{9} = cos \frac{2\pi}{9} - cos \frac{8 \pi}{9} \\ = (cos\frac{2\pi}{9}+cos \frac{7 \pi}{9}) -cos \frac{7 \pi}{9} - (cos \frac{\pi}{9} + cos \frac{8 \pi}{9}) + cos \frac{\pi}{9} \\ = 2 cos \frac{\pi}{2}cos\frac{5 \pi}{18} -cos \frac{7 \pi}{9} - cos \frac{\pi}{2} cos \frac{7\pi}{18} + cos \frac{\pi}{9} \\ = cos \frac{\pi}{9} - cos \frac{7 \pi}{9} 2cos29π2cos2913π=cos92πcos98π=(cos92π+cos97π)cos97π(cos9π+cos98π)+cos9π=2cos2πcos185πcos97πcos2πcos187π+cos9π=cos9πcos97π

至此就完成了证明。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值