车道线方程

本文详细介绍了车道线的组成,包括直线、固定曲率弯道和缓和曲线。重点阐述了如何通过航向角、回旋线(clothoid)和曲率推导车道线方程,以及各参数的物理意义,如起点位置、航向角、曲率和曲率变化率的表达式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

车道线方程


一、车道线的组成

车道线一般由直线、固定曲率弯道的曲线和缓和曲线组成,缓和曲线主要是用于直线和曲线的连接部分。
缓和曲线一般使用螺旋曲线。

二、车道线方程的推导

1.航向角的定义

如下图,θ表示车辆质心速度v与横轴的夹角。其中β是车辆质心侧偏角,φ是车辆横摆角。显然θ=β+φ。
航向角和横摆角

2.缓和曲线–回旋线(clothoid)

回旋线是半径从无穷大一直变化到一定设计值的一段弧线。回旋线是曲率随着曲线长度成比例变化的曲线。
公路、匝道常用的缓和曲线是回旋线,也叫放射螺旋线。回旋线不仅线形美观,而且与驾驶员匀速转动方向盘由圆曲线驶入直线或者由直线驶入圆曲线的轨迹线相符合。

回旋线的本质特征:曲率k随弧长l线性变化。
  d k / l = ± 1 / A 2 , 其中  R ∗ L s = A 2 \ dk/l = ±1/A^2,其中 \ R*Ls=A^2  dk/l=±1/A2,其中 RLs=A2

3. 车道线方程推导

如下图:假设MN是回旋线,   K m \ K_m  Km K n K_n Kn表示M、N处的曲率,   θ m \ θ_m  θm   θ n \ θ_n  θn分别表示M、N处的航向角,  △ s \ △s  s表示MN之间的弧长, s s s表示弧长。
则:   K n = K m + C 1 ∗ △ s ( 1 ) \ K_n = K_m + C_1*△s\quad(1)  Kn=Km+C1s1,其中   C 1 \ C_1  C1表示 ± 1 / A 2 ±1/A^2 ±1/A2,是一个常数,表示曲率随弧长的变化率。
曲率还可以表示为单位弧段上切线转过的角度来表示,即 K = ∣ △ α / △ s ∣ K = |△α/△s| K=∣△α/△s
由此可得: α n = α m + ∫ 0 s K d s ( 2 ) α_n = α_m + \int_0^sKds\quad(2) αn=αm+0sKds2
由(1)可知: K = K m + C 1 ∗ △ s K = K_m+C_1*△s K=Km

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值