车道线方程
一、车道线的组成
车道线一般由直线、固定曲率弯道的曲线和缓和曲线组成,缓和曲线主要是用于直线和曲线的连接部分。
缓和曲线一般使用螺旋曲线。
二、车道线方程的推导
1.航向角的定义
如下图,θ表示车辆质心速度v与横轴的夹角。其中β是车辆质心侧偏角,φ是车辆横摆角。显然θ=β+φ。
2.缓和曲线–回旋线(clothoid)
回旋线是半径从无穷大一直变化到一定设计值的一段弧线。回旋线是曲率随着曲线长度成比例变化的曲线。
公路、匝道常用的缓和曲线是回旋线,也叫放射螺旋线。回旋线不仅线形美观,而且与驾驶员匀速转动方向盘由圆曲线驶入直线或者由直线驶入圆曲线的轨迹线相符合。
回旋线的本质特征:曲率k随弧长l线性变化。
d k / l = ± 1 / A 2 , 其中 R ∗ L s = A 2 \ dk/l = ±1/A^2,其中 \ R*Ls=A^2 dk/l=±1/A2,其中 R∗Ls=A2
3. 车道线方程推导
如下图:假设MN是回旋线, K m \ K_m Km、 K n K_n Kn表示M、N处的曲率, θ m \ θ_m θm、 θ n \ θ_n θn分别表示M、N处的航向角, △ s \ △s △s表示MN之间的弧长, s s s表示弧长。
则: K n = K m + C 1 ∗ △ s ( 1 ) \ K_n = K_m + C_1*△s\quad(1) Kn=Km+C1∗△s(1),其中 C 1 \ C_1 C1表示 ± 1 / A 2 ±1/A^2 ±1/A2,是一个常数,表示曲率随弧长的变化率。
曲率还可以表示为单位弧段上切线转过的角度来表示,即 K = ∣ △ α / △ s ∣ K = |△α/△s| K=∣△α/△s∣
由此可得: α n = α m + ∫ 0 s K d s ( 2 ) α_n = α_m + \int_0^sKds\quad(2) αn=αm+∫0sKds(2)
由(1)可知: K = K m + C 1 ∗ △ s K = K_m+C_1*△s K=Km