HSV标记肤色与实现艺术效果---OpenCV-Python开发指南(9)

本文介绍了使用OpenCV-Python通过HSV色彩空间标记肤色的方法,利用色调H和饱和度S的范围提取人脸以进行抠图。同时,通过调整V通道的值,实现了独特的艺术效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标记肤色

前面,我们通过标记H通道上的红色,从而提取图片上的红色有效区域。那么同样的,我们可以限定肤色的范围,提取人脸的,以达到抠图的效果。

首先,肤色不仅要关注H通道,同样也需要关注S通道。所以,我们首先需要介绍一个函数:split(),定义如下:

img = cv2.imread("4.jpg")
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
h, s, v = cv2.split(hsv)

如上面代码所示,我们可以通过cv2.splite()函数,来获取HSV图像上,所有通道的值。

首先,我们假定人的肤色的大致范围,其色调在[5,170]之间,饱和度在[25,166]之间。这样,我们可以按上一节的内容来获取限定范围内的图像,代码如下所示:

import cv2

img 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

李元静

您的鼓励就是我创作的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值