什么是模式识别和研究方向

转载 2007年10月15日 10:36:00
 

模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别 的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和 识别。广义的模式识别属计算机科学中智能模拟的研究范畴,内容非常广泛,包括声音和语言识别、文字识别、指纹识别、声纳信号和地震信号分析、照片图片分 析、化学模式识别等等。计算机模式识别实现了部分脑力劳动自动化。

模式识别--对表征事物或现象的各种形式的(数值的,文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。

模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波 形、地震波、心电图、脑电图、图片、文字、符号、三位物体和景物以及各种可以用物理的、化学的、生物的传感器对对象进行测量的具体模式进行分类和辨识。

模式识别问题指的是对一系列过程或事件的分类与描述,具有某些相类似的性质的过程或事件就分为一类。模式识别问题一般可以应用以下4种方法进行分析处理。

统计模式识别方法:统计模式识别方法是受数学中的决策理论的启发而产生的一种识别方法,它一般假定被识别的对象或经过特征提取向量是符合一定分布规律的随 机变量。其基本思想是将特征提取阶段得到的特征向量定义在一个特征空间中,这个空间包含了所有的特征向量,不同的特征向量,或者说不同类别的对象都对应于 空间中的一点。在分类阶段,则利用统计决策的原理对特征空间进行划分,从而达到识别不同特征的对象的目的。统计模式识别中个应用的统计决策分类理论相对比 较成熟,研究的重点是特征提取。

人工神经网络模式识别:人工神经网络的研究起源于对生物神经系统的研究。人工神经网络区别于其他识别方法的最大特点是它对待识别的对象不要求有太多的分析与了解,具有一定的智能化处理的特点。

句法结构模式识别:句法结构模式识别着眼于对待识别对象的结构特征的描述。

在上述4种算法中,统计模式识别是最经典的分类识别方法,在图像模式识别中有着非常广泛的应用。

 

模式识别研究方向
     
模 式识别研究主要集中在两方面,即研究生物体(包括人)是如何感知对象的,属于认知科学的范畴,以及在给定的任务下,如何用计算机实现模式识别的理论和方 法。前者是生理学家、心理学家、生物学家和神经生理学家的研究内容,后者通过数学家、信息学专家和计算机科学工作着近几十年来的努力,已经取得了系统的研 究成果。

一个计算机模式识别系统基本上事有三部分组成的,即数据采集、数据处理和分类决策或模型匹配。任何一种模式识别方法都首先要通过各种传感器把被研究对象的 各种物理变量转换为计算机可以接受的数值或符号(串)集合。习惯上,称这种数值或符号(串)所组成的空间为模式空间。为了从这些数字或符号(串)中抽取出 对识别有效的信息,必须对它进行处理,其中包括消除噪声,排除不相干的信号以及与对象的性质和采用的识别方法密切相关的特征的计算(如表征物体的形状、周 长、面积等等)以及必要的变换(如为得到信号功率谱所进行的快速傅里叶变换)等。然后通过特征选择和提取或基元选择形成模式的特征空间。以后的模式分类或 模型匹配就在特征空间的基础上进行。系统的输出或者是对象所属的类型或者是模型数据库中与对象最相似的模型编号。针对不同应用目的,这三部分的内容可以有 很大的差别,特别是在数据处理和识别这两部分,为了提高识别结果的可靠性往往需要加入知识库(规则)以对可能产生的错误进行修正,或通过引入限制条件大大 缩小待识别模式在模型库中的搜索空间,以减少匹配计算量。在某些具体应用中,如机器视觉,除了要给出被识别对象是什么物体外,还要求出该物体所处的位置和姿态以引导机器人的工作。

 

模式识别在实际中的应用

模式识别已经在天气预报、卫星航空图片解释、工业产品检测、字符识别、语音识别、指纹识别、医学图像分析等许多方面得到了成功的应用。所有这些应用都是和 问题的性质密切不可分的,至今还没有发展成统一的、有效的可应用于所有的模式识别的理论。当前的一种普遍看法是不存在对所有的模式识别问题都使用的单一模 型和解决识别问题的单一技术,我们现在拥有的是一个工具袋,我们所要做的是结合具体问题把统计的和句法(结构)的识别方法结合起来,把统计模式识别或句法 模式识别与人工智能中的启发式搜索结合起来,把人工神经元网络与各种以有技术以及人工智能中的专家系统,不确定方法结合起来,深入掌握各种工具的效能和应 用的可能性,互相取长补短,开创模式识别应用的新局面。

模式识别(Pattern Recognition)学习笔记(一)--何为模式识别

一、什么是模式和模式识别?         当我们人眼看到一幅画时,我们能够很清晰的知道其中哪里是动物,哪里是山,水,人等等,但是人眼又是如何识别和分辨的呢,其实很简单,人类也是在先验知识和对以往多个...
  • eternity1118_
  • eternity1118_
  • 2016-04-09 16:01:47
  • 11100

模式识别(一):概念介绍

在正式引入模式识别的概念之前,让我们先看几个模式识别应用的实例。 1.iphone5s 中的指纹识别系统 苹果公司于2013年发布新一代手机——iPhone5s,革命性地在其经典的Home键上加入...
  • longyindiyi
  • longyindiyi
  • 2014-02-27 20:54:36
  • 4442

几种常见模式识别算法整理和总结

1. KNN 2. Bayes 3. PCA 4. LDA 5. NMF 6. GMM 书上写的老师ppt上写的都看不懂,然后绕了一大圈去自己查资料理解,回头看看发现,Ah-ha,原来...
  • scyscyao
  • scyscyao
  • 2010-11-04 15:59:00
  • 148511

图像模式识别的方法

图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找...
  • gdut2015go
  • gdut2015go
  • 2015-07-05 11:53:22
  • 8624

什么是全连接神经网络

什么是全连接神经网络
  • jacke121
  • jacke121
  • 2017-02-11 11:59:00
  • 1048

模式识别的一些基本概念

    模式识别诞生于20实际20年代,随着40年代计算机的出现,50年代人工智能的兴起,模式识别在60年代初迅速发展成为一门学科。简单点说,模式识别是根据输入的原始数据对齐进行各种分析判断,从而得到...
  • carson2005
  • carson2005
  • 2011-04-12 21:46:00
  • 8651

模式识别:感知器的实现

在之前的模式识别研究中,判别函数J(.)的参数是已知的,即假设概率密度函数的参数形式已知。本节不考虑概率密度函数的确切形式,使用非参数化的方法来求解判别函数。由于线性判别函数具有许多优良的特性,因此这...
  • liyuefeilong
  • liyuefeilong
  • 2015-04-23 09:40:03
  • 14194

《模式识别与智能计算--MATLAB技术实现》

因为突然要用到特征提取、模式识别的东西,所以现在开始补习这方面的理论知识,因为之前没怎么去看模式识别,下载了书上的源代码错误率太高了,,,应该是这个写代码的人的书写习惯和我不一样 所以我想着 我也写...
  • wd1603926823
  • wd1603926823
  • 2016-02-26 15:53:51
  • 2764

模式识别与智能计算的MATLAB技术实现(第2版)(完整版pdf+源码)

  • 2017年09月22日 08:10
  • 28.49MB
  • 下载

什么是模式识别和研究方向

  模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别 的过程。模式识别包括相互关联的两个阶段,即学习阶...
  • liyufeng0803
  • liyufeng0803
  • 2007-10-15 10:36:00
  • 4759
收藏助手
不良信息举报
您举报文章:什么是模式识别和研究方向
举报原因:
原因补充:

(最多只允许输入30个字)