CodeForces 584D Dima and Lisa

23 篇文章 0 订阅
8 篇文章 0 订阅
D. Dima and Lisa
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output

Dima loves representing an odd number as the sum of multiple primes, and Lisa loves it when there are at most three primes. Help them to represent the given number as the sum of at most than three primes.

More formally, you are given an odd numer n. Find a set of numbers pi (1 ≤ i ≤ k), such that

  1. 1 ≤ k ≤ 3
  2. pi is a prime

The numbers pi do not necessarily have to be distinct. It is guaranteed that at least one possible solution exists.

Input

The single line contains an odd number n (3 ≤ n < 109).

Output

In the first line print k (1 ≤ k ≤ 3), showing how many numbers are in the representation you found.

In the second line print numbers pi in any order. If there are multiple possible solutions, you can print any of them.

Sample test(s)
input
27
output
3
5 11 11
Note

A prime is an integer strictly larger than one that is divisible only by one and by itself.


直接暴力

#include <stdio.h>
#include <math.h>
bool isPrime(int num)
{
    bool ret=true;
    for(int i=2;i<=sqrt(num);i++)
        if(num%i==0)
            ret=false;
    return ret;
}

int main()
{
    int n;
    scanf("%d",&n);
        if(isPrime(n))
            printf("1\n%d\n",n);
        else if(isPrime(n-2))
            printf("2\n2 %d\n",n-2);
        else if(isPrime(n-4))
            printf("3\n2 2 %d\n",n-4);
        else
        {
            for(int first=3;first<=n;first+=2)
            {
                if(isPrime(first))
                {
                    int ret=n-first;
                    for(int second=3;second<ret;second+=2)
                    {
                        int third=ret-second;
                        if(isPrime(second)&&isPrime(third))
                        {
                            printf("3\n%d %d %d\n",first,second,third);
                            return 0;
                        }
                    }
                }
            }
        }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值