https://www.jb51.net/article/180654.htm
python求极值点主要用到scipy库。
1. 首先可先选择一个函数或者拟合一个函数,这里选择拟合数据:np.polyfit
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import signal #滤波等 xxx = np.arange( 0 , 1000 ) yyy = np.sin(xxx * np.pi / 180 ) z1 = np.polyfit(xxx, yyy, 7 ) # 用7次多项式拟合 p1 = np.poly1d(z1) #多项式系数 print (p1) # 在屏幕上打印拟合多项式 yvals = p1(xxx) plt.plot(xxx, yyy, '*' ,label = 'original values' ) plt.plot(xxx, yvals, 'r' ,label = 'polyfit values' ) plt.xlabel( 'x axis' ) plt.ylabel( 'y axis' ) plt.legend(loc = 4 ) plt.title( 'polyfitting' ) plt.show() |
得到的图形是:

2. 求波峰值,也就是极大值,得到:signal.find_peaks
1 2 3 4 5 6 7 8 9 10 11 12 13 | # 极值 num_peak_3 = signal.find_peaks(yvals, distance = 10 ) #distance表极大值点的距离至少大于等于10个水平单位 print (num_peak_3[ 0 ]) print ( 'the number of peaks is ' + str ( len (num_peak_3[ 0 ]))) plt.plot(xxx, yyy, '*' ,label = 'original values' ) plt.plot(xxx, yvals, 'r' ,label = 'polyfit values' ) plt.xlabel( 'x axis' ) plt.ylabel( 'y axis' ) plt.legend(loc = 4 ) plt.title( 'polyfitting' ) for ii in range ( len (num_peak_3[ 0 ])): plt.plot(num_peak_3[ 0 ][ii], yvals[num_peak_3[ 0 ][ii]], '*' ,markersize = 10 ) plt.show() |

3. 在可导的情形下,可以求导来求极值点,同时得到极大值和极小值点:np.polyder
1 2 | yyyd = np.polyder(p1, 1 ) # 1表示一阶导 print (yyyd) |
此时:yyyd.r 即可就得导数为0的点,可以与上述的极大值点对应比较

4. 直接函数分别求极大值和极小值:signal.argrelextrema 函数
1 2 3 4 5 6 7 8 9 10 11 12 | print (yvals[signal.argrelextrema(yvals, np.greater)]) #极大值的y轴, yvals为要求极值的序列 print (signal.argrelextrema(yvals, np.greater)) #极大值的x轴 peak_ind = signal.argrelextrema(yvals,np.greater)[ 0 ] #极大值点,改为np.less即可得到极小值点 plt.plot(xxx, yyy, '*' ,label = 'original values' ) plt.plot(xxx, yvals, 'r' ,label = 'polyfit values' ) plt.xlabel( 'x axis' ) plt.ylabel( 'y axis' ) plt.legend(loc = 4 ) plt.title( 'polyfitting' ) plt.plot(signal.argrelextrema(yvals,np.greater)[ 0 ],yvals[signal.argrelextrema(yvals, np.greater)], 'o' , markersize = 10 ) #极大值点 plt.plot(signal.argrelextrema(yvals,np.less)[ 0 ],yvals[signal.argrelextrema(yvals, np.less)], '+' , markersize = 10 ) #极小值点 plt.show() |

总结
以上所述是小编给大家介绍的python计算波峰波谷值的方法(极值点),希望对大家有所帮助,也非常感谢大家对脚本之家网站的支持!