置信区间公式
- 小样本数<30:
- 大样本数>=30:
题一:
某生产过程所生产零件的尺寸服从正态分布。现采 10 个样本,具体数值如下:
9.5,8.5,10.8,12.0,8.8,8.4,10.1,9.0,10.5,10.1
请基于上述数据,计算该尺寸变量的双侧 95%置信区间。
可供使用的部分正态分布和 t分布表数值:
z0.025 = 1.960 , z0.05 = 1.645
t0.025,10 = 2.228 , t0.05,10 = 1.812
t0.025,9 = 2.262 , t0.05,9 = 1.833
解:
- 双侧置信区间公式:
- 10个样本均值
=9.77
- 置信度公式:1-α
- 带入95%,1-α=0.95,置信度α=0.05
- 公式
,带入a=0.05,样本数n=10,即t0.025,9 ,带入t分布表数值t0.025,9 = 2.262
- 根据样本方差公式
求s,s²=1.32,s=1.1489
题二:
在总体x~N(,1)中抽取容量为100的样本,得到样本均值
=8,求
的置信度为0.95的置信区间。
=1.96
解:
- 置信区间公式:
- 因为正态分布公式:X~N(μ,δ²),x~N(
,1)所以δ=1
- 因为置信度公式:1-α=0.95,所以α=0.05
- 其中
=8,δ=1,n=100,α=0.05,带入置信区间公式
- 8
(1/
)
= ((8-(1/10*1.96),(8+(1/10*1.96))=(8-0.196,8+0.196)=(7.804,8.196)
-
的置信度为0.95的置信区间为(7.804,8.196)
题三
题四:
解:T检验
- 双正态公式:
- 假设方案一H0:新原料强力大于旧原料(μ₁ > μ₂)
- 假设方案一H1:新原料强力小于等于旧原料(μ₁ <= μ₂)
= (142+145+146+139+138+148)/6 = 143
= (155+147+152+143+153+150)/6 = 150
= (-1² + 2² + 3² - 4² - 5² + 5² )/5 = -4/5 = -0.8
= (5² - 3² + 2² - 7² + 3² + 0² )/5 =-20/5 = -4
- 计算池方差
- Sp² =
=
= 2.4
- Sp² =
- 标准误差SE =
=
=
= 0.89
- 校验统计量 t 的观测值
=
= (143 - 150) / 0.89 = -7.87
- 确定临界值: 在α = 0.05 的显著性水平下,双侧检验的临界值为 t0.025(10) = 2.228
- 决策:|t0|和t 0.025 (10)比较,7.87 > 2.228 , 所以不拒绝假设H0,所以可以应该使用新材料。
题五:差异性检查t检查
某厂试用了新工艺对金属做热处理,现在分别测得采用新、旧工艺处理后金属的抗压强度,结果如下:
旧工艺 27,24,29,24,32,26
新工艺 33,34,29,27,32,31
假定新旧工艺处理后金属的抗压强度均服从正态分布,且方差相等。试问该厂是否应该采用新工艺?(α=0.05,t0.025(10)=2.228, t0.05(10)=1.182)
答:
- 建立假设H0:新工艺抗压强度大于旧工艺(μ₁ > μ₂)
- 建立假设H1:新工艺抗压强度小于等于旧工艺(μ₁ <= μ₂)
-
=(27+24+29+24+32+26) / 6 = 27
= (33+34+29+27+32+31)/6 = 31
-
= (0² - 3² + 2² - 3² + 5² - 1² )/(6-1) = 10/5 = 2
= (2² + 3² - 2² - 4² + 1² + 0² )/(6-1) = -6/5
- Sp² =
=
= 0.4
- SE =
=
= 0.13
-
=
= (27-31)/0.13 = -30.77
-
确定临界值: 在α = 0.05 的显著性水平下,双侧检验的临界值为 t0.025(10) = 2.228
-
决策:|t0|和t 0.025 (10)比较,30.77 > 2.228 , 所以不拒绝假设H0,所以可以应该使用新材料。
题六:差异性检查F检测
题七
为了测定甲、乙两台灌装机器灌装的重量是否相同,并对两台机器灌装重量误差的差异做出估计,从甲机器抽取灌装好的 25 个样品,乙机器抽取 16 个样品,测试结果表明,甲机器灌装平均重量 22kg,乙机器灌装平均重量 20kg,根据过去的经验,两机器的方差均为 10kg,试求:(1)对两台机器的灌装平均重量之差构造置信度为 95%的置信区间;
(2)检验甲乙两台机器灌装的平均重量有无显著差异(α=0.05,=1.96 )
解1:
-
双正态公式 =
= 22 - 20
1.96 *
-
= 2
1.96 * \sqrt{1.025} = 2
1.96 * 1.0124 = 2
1.9843 = [-0.016,3.984]
解2:
-
建立假设 H₀:甲机器和乙机器的灌装平均重量相等(μ₁ = μ₂)
-
建立假设H₁:甲机器和乙机器的灌装平均重量有显著差异(μ₁ ≠ μ₂)
-
z =
=
= 2 / 1.025 = 1.95
-
给定显著性水平 α = 0.05,查找临界值 z0.025 = 1.96。
-
1.9024< 1.96 , 不决绝假设H0,甲乙两台机器灌装的平均重量无显著差异。
题八
某种户型住宅销售价格的全国均值为 181900 元。在由西部地区 40套该户型住宅的销售价格组成样本中,样本均值为 166400 元。总体标准差33500 元。
a.提出原假设和备择假设,用于确定是否西部地区该户型住宅销售价格的总体均值小于全国均值181900 元。
b.检验统计量的值是多少?
c.在a=0.05时,你的结论是什么?(Z0.05=1.645)
答a:
- 原假设(H0):西部地区该户型住宅销售价格的总体均值大于或等于全国均值,即 μ >= 181900 元。
- 备择假设(H1):西部地区该户型住宅销售价格的总体均值小于全国均值,即 μ < 181900 元。
答b:
- 检验统计量z =
= (166400-181900)/(33500/
= -2.925
答c:
- 在单尾检验中,对于小于的备择假设,临界值应为负值,而对于大于的备择假设,临界值应为正值。
- a=0.05 ,Z0.05=-1.645 ,-2.925 < -1.645
- 所以拒绝原假设(H0),西部地区该户型住宅销售价格的总体均值小于全国均值。