置信区间之正态

资料:标准正态分布表

在这里插入图片描述
P(X ≤ \le 1.645) = 0.95

P(X ≤ \le 1.96 ) = 0.975

在这里插入图片描述

在这里插入图片描述

  1. 可信度高不代表精确度高。所以二者本质上都是可信度高,但精确度低。
  2. 统计学中,样本相同的情况下,置信水平越高,置信区间越宽。
    如正态分布中,置信度=68%,置信区间=μ±σ;置信度=90%,置信区间=μ±1.64σ;置信度=99%,置信区间=μ±2.58σ。

定义
置信区间:每一个置信区间会对应一个置信水平,表示真实参数落在置信区间中的概率。
定义之 置信度and置信区间

置信区间的理解
在这里插入图片描述

在Matlab中,可以使用norminv函数来计算正态分布置信区间。该函数的语法是norminv(p, mu, sigma),其中p是置信水平,mu是均值,sigma是标准差。函数会返回一个置信区间的上下限。 例如,如果要计算正态分布的95%置信区间,可以使用以下代码: ```matlab alpha = 0.05; % 显著性水平为0.05 mu = 5; % 均值 sigma = 4; % 标准差 lower = norminv(alpha/2, mu, sigma); % 置信区间的下限 upper = norminv(1-alpha/2, mu, sigma); % 置信区间的上限 fprintf('置信区间为 \[%f, %f\]\n', lower, upper); ``` 这段代码会输出正态分布的95%置信区间。你可以根据需要修改alpha、mu和sigma的值来计算其他置信区间。 #### 引用[.reference_title] - *1* [MATLAB解决正态分布数据的大致方法](https://blog.csdn.net/yongheng_1999/article/details/50557486)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [matlab在概率论与数理统计中的应用](https://blog.csdn.net/m0_67790374/article/details/123343834)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值