【GNN报告】香港科技大学李佳:图异常检测再思考—我们究竟需要怎样的图神经网络?

该报告由香港科技大学的李佳博士分享,探讨了图神经网络(GNN)在异常检测中的应用。研究发现异常数据会导致图的谱能量向高频转移,提出Beta小波图神经网络(BWGNN)以更好地捕捉这种变化。BWGNN在多个大型数据集上的表现优于现有模型,证明了其在异常检测中的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1、简介

2、Rethinking Graph Neural Networks for Anomaly Detection

背景

 学习模式

现有图异常检测工作

​编辑 动机

背景知识

 方法

 实验

 总结

3、参考


1、简介

报告嘉宾:李佳(香港科技大学)

报告题目:图异常检测再思考—我们究竟需要怎样的图神经网络?

报告摘要:

图神经网络(GNN)被广泛应用于结构化数据的异常检测,例如社交网络恶意账号检测、金融交易欺诈检测等。我们首次从谱域的角度分析了异常数据可能造成的影响。核心发现是:异常数据将导致频谱能量出现 “右移” 现象,即频谱能量分布从低频向高频移动。基于这一发现,我们又提出了 Beta 小波图神经网络(BWGNN)。它拥有多个具有局部性的带通滤波器,能够更好捕获 “右移” 产生的高频异常信息。在四个大规模图异常检测数据集上,BWGNN 的性能均优于现有的模型。

报告人简介:

李佳,香港科技大学 计算机系以及香港科技大学(广州) 数据科学与分析学域 助理教授,2021年博士毕业于香港中文大学。李佳博士在工业界有多年的异常检测工作经历,曾供职于Google和腾讯。其研究目前主要为图数据异常检测,可逆图神经网络以及基于图数据的药物生成和医疗健康。

参考文献

1.Rethinking Graph Neural Networks for Anomaly Detection

2.https://github.com/squareRoot3/Rethinking-Anomaly-Detection

2、Rethinking Graph Neural Networks for Anomaly Detection

背景

 

 

 学习模式

 

现有图异常检测工作

 动机

 从找合适的滤波器角度入手

背景知识

 图拉普拉斯算子

谱分解(外界环境信息)

 ​​​​​

 

 谱聚类

 

 当特征逐渐变多的时候,低频能量向高频转移

低频能量定义

 结论

当图中存在异常或者当图中的异常逐渐变大时,谱分解后的能量分布糊逐渐地从低频部分往高频部分转移

 通过假设验证结论

低频特征分量变大则低频能量变小

 验证猜想:在合成数据集上

 验证猜想:在真实数据集上

大数据集上验证存在困难,提出新概念

验证

 发现异常减少,低频能量上升(绿色虚线比黄色虚线高)

 通过数据值化结果验证

 方法

 

 发现小波变换就是低通滤波

 

发现小波GNN确实符合,同时确定使用beta kernal的intuition

 

 回到GNN的设计上,依旧遵循MPNN范式 

 实验

框起来的是大数据集

 

 

 总结

3、参考

录播视频链接 || 香港科技大学李佳:图异常检测再思考—我们究竟需要怎样的图神经网络?

LOGS 第2022/07/16期 || 香港科技大学李佳:图异常检测再思考—我们究竟需要怎样的图神经网络?_哔哩哔哩_bilibili

 

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

静静喜欢大白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值