深度学习基础2(运算、广播、索引、切片、内存节省、转换其他Python对象)

运算符

  • 如何在这些数据上执行数学运算,其中最简单且最有用的操作是按元素(elementwise)运算。
  • 它们将标准标量运算符应用于数组的每个元素。 对于将两个数组作为输入的函数,按元素运算将二元运算符应用于两个数组中的每对位置对应的元素。
  • 我们可以基于任何从标量到标量的函数来创建按元素函数。

在数学中,我们通过符号f:R→R 来表示一元标量运算符(只接收一个输入)。 这意味着该函数从任何实数映射到另一个实数。

​ 通过符号f:R,R→R 表示二元标量运算符 这意味着该函数接收两个输入,并产生一个输出

给定同一形状的任意两个向量𝐮和𝐯和二元运算符𝑓, 我们可以得到向量𝐜=𝐹(𝐮,𝐯)

计算方法是𝑐𝑖←𝑓(𝑢𝑖,𝑣𝑖)(其中ci、ui和vi分别是向量𝐜、𝐮和𝐯中的元素)

在这里通过将标量函数升级为按元素向量运算来生成向量值F:Rd,Rd→Rd。

对于任意具有相同形状的张量, 常见的标准算术运算符(**+ - * / ****)都可以被升级为按元素运算。

可以在同一形状的任意两个张量上调用按元素操作。 在下面的例子中,我们使用逗号来表示一个具有5个元素的元组,其中每个元素都是按元素操作的结果。

x = torch.tensor([1.0, 2, 4, 8])     
y = torch.tensor([2, 2, 2, 2])
x + y, x - y, x * y, x / y, x ** y  # 本质上是矩阵的基本运算

(tensor([ 3., 4., 6., 10.]),

tensor([-1., 0., 2., 6.]),

tensor([ 2., 4., 8., 16.]),

tensor([0.5000, 1.0000, 2.0000, 4.0000]),

tensor([ 1., 4., 16., 64.]))

“按元素”方式可以应用更多的计算,包括像求幂这样的一元运算符。

torch.exp(x)

tensor([2.7183e+00, 7.3891e+00, 5.4598e+01, 2.9810e+03])

把多个张量连结(concatenate)在一起

把它们端对端地叠起来形成一个更大的张量。 只需要提供张量列表,并给出沿哪个轴连结。 下面的例子分别演示了当沿行(轴-0,形状的第一个元素) 和按列(轴-1,形状的第二个元素)连结两个矩阵时,会发生什么情况。

0表示按行拼接,1表示按列拼接
X = torch.arange(12, dtype=torch.float32).reshape((3,4))
Y = torch.tensor([[2.0, 1, 4, 3], [1, 2, 3, 4], [4, 3, 2, 1]])
print(X)
print(Y)
torch.cat((X, Y), dim=0),            
#把这两个元素合并在一起,并且在第0维合并  可以理解为按行堆起来
 torch.cat((X, Y), dim=1)
#把这两个元素合并在一起,并且在第1维合并  可以理解为按列堆起来
#dim=3的时候会报错,因为要求输入3维的,而现在是输入2维的

tensor([[ 0., 1., 2., 3.],

​ [ 4., 5., 6., 7.],

​ [ 8., 9., 10., 11.]])

tensor([[2., 1., 4., 3.],

​ [1., 2., 3., 4.],

​ [4., 3., 2., 1.]])

(tensor([[ 0., 1., 2., 3.],

​ [ 4., 5., 6., 7.],

​ [ 8., 9., 10., 11.],

​ [ 2., 1., 4., 3.],

​ [ 1., 2., 3., 4.],

​ [ 4., 3., 2., 1.]]),

tensor([[ 0., 1., 2., 3., 2., 1., 4., 3.],

​ [ 4., 5., 6., 7., 1., 2., 3., 4.],

​ [ 8., 9., 10., 11., 4., 3., 2., 1.]]))

如果要通过逻辑运算符构建二元张量

X == Y为例: 对于**每个位置,**如果XY在该位置相等,则新张量中相应项的值为1。 这意味着逻辑语句X == Y在该位置处为真,否则该位置为0。

X == Y

tensor([[False, True, False, True],

​ [False, False, False, False],

​ [False, False, False, False]])

X.sum()    #对张量中的所有元素进行求和,会产生一个单元素张量。

tensor(66.)

广播机制(从numpy过来的,容易出错)

在某些情况下,即使形状不同,仍然可以通过调用 广播机制(broadcasting mechanism)来执行按元素操作

这种机制的工作方式如下:

首先,通过适当复制元素来扩展一个或两个数组, 以便在转换之后,两个张量具有相同的形状。 其次,对生成的数组执行按元素操作。

在大多数情况下,我们将沿着数组中长度为1的轴进行广播,如下例子:

a = torch.arange(3).reshape((3, 1))#维度是2
b = torch.arange(2).reshape((1, 2))#维度是2
a, b

(tensor([[0],

​ [1],

​ [2]]),

tensor([[0, 1]]))

由于ab分别是3×1和1×2矩阵,如果让它们相加,它们的形状不匹配。 我们将两个矩阵广播为一个更大的3×2矩阵

如下所示:矩阵a将复制列, 矩阵b将复制行,然后再按元素相加。

a + b  #维度相同才能相加

tensor([[0, 1],

​ [1, 2],

​ [2, 3]])

索引和切片

  • 就像在任何其他Python数组中一样,张量中的元素可以通过索引访问。
  • 与任何Python数组一样:第一个元素的索引是0,最后一个元素索引是-1;
  • 可以指定范围以包含第一个元素和最后一个之前的元素。
X[-1], X[1:3]  #我们可以用[-1]选择最后一个元素,可以用[1:3]选择第二个和第三个元素

(tensor([ 8., 9., 10., 11.]),

tensor([[ 4., 5., 6., 7.],

​ [ 8., 9., 10., 11.]]))

X[1, 2] = 9  # 除读取外,我们还可以通过指定索引来将元素写入矩阵。
X

tensor([[ 0., 1., 2., 3.],

​ [ 4., 5., 9., 7.],

​ [ 8., 9., 10., 11.]])

如果我们想为多个元素赋值相同的值,我们只需要索引所有元素,然后为它们赋值。

例如,[0:2, :]访问1行和2行,其中**“:”**代表沿轴1(列)的所有元素。 虽然我们讨论的是矩阵的索引,但这也适用于向量和超过2个维度的张量。

X[0:2, :] = 12  #0:2意思是0行和1行
X

tensor([[12., 12., 12., 12.],

​ [12., 12., 12., 12.],

​ [ 8., 9., 10., 11.]])

节省内存(在高级应用需要考虑的问题)

运行一些操作可能会导致为新结果分配内存

例如,如果我们用Y = X + Y,我们将取消引用Y指向的张量,而是指向新分配的内存处的张量。

在下面的例子中,我们用Python的id()函数演示了这一点, 它给我们提供了内存中引用对象的确切地址。 运行Y = Y + X后,会发现id(Y)指向另一个位置。 这是因为Python首先计算Y + X,为结果分配新的内存,然后使Y指向内存中的这个新位置。

before = id(Y)
Y = Y + X
id(Y) == before

False

这可能是不可取的,原因有两个:

  • 我们尽可能要地分配内存。 在机器学习中,可能有数百兆的参数,并且在一秒内多次更新所有参数。 通常情况下,我们希望原地执行这些更新。
  • 其次,如果我们不原地更新,其他引用仍然会指向旧的内存位置, 这样我们的某些代码可能会无意中引用旧的参数。
幸运的是,(执行原地操作)非常简单。

我们可以使用切片表示法将操作的结果分配给先前分配的数组

例如Y[:] = <expression>。 为了说明这一点,我们首先创建一个新的矩阵Z,其形状与另一个Y相同, 使用zeros_like来分配一个全00的块。

Z = torch.zeros_like(Y)#意思是创建一个z,和y的形状和数据类型是一样的,但是数值是0
print('id(Z):', id(Z)) #查看z的地址
Z[:] = X + Y  #然后对z进行改写,让z里面的元素等于x+y
print('id(Z):', id(Z))#然后查看z的id   根据下面的输出可以看出来系统没有为z创建新的内存

id(Z): 3244470282416

id(Z): 3244470282416

如果在后续计算中没有重复使用X, 我们也可以使用X[:] = X + Y或X += Y来减少操作的内存开销。

before = id(X)
X += Y
id(X) == before

True

转换为Numpy(其他Python对象)张量

将深度学习框架定义的张量**转换为NumPy张量(ndarray)**很容易,反之也同样容易。

torch张量和numpy数组将共享它们的底层内存,就地操作更改一个张量也会同时更改另一个张量。

A = X.numpy()#A会的到一个numpy类型的多元数组
B = torch.tensor(A)#将A里面的numpy类型的多元数组X拿回来
type(A), type(B)

(numpy.ndarray, torch.Tensor)

将大小为1的张量转换为Python标量,我们可以调用item函数或Python的内置函数。

a = torch.tensor([3.5])
a, a.item(), float(a), int(a)#int向下取整

(tensor([3.5000]), 3.5, 3.5, 3)

补充小知识

# int(): 向下取整3.7取3;
# math.ceil(): 向上取整3.2取4;
# round(): 四舍五入;
# math.modf(): 取整数部分和小数部分,返回一个元组:(小数部分,整数部分)。注意小数部分的结果有异议

小结

深度学习基础1和2这两篇文章主要讲了

  • 深度学习存储和操作数据的主要接口是张量(n维数组)。
  • 它提供了各种功能,包括基本数学运算、广播、索引、切片、内存节省和转换其他Python对象。
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NDNPOMDFLR

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值