这个题,第一次做的时候,感觉好麻烦,
那个时候,不怎么清楚拓扑排序。
所以,那个时候借鉴网友的代码,用到了Floyd。
拓扑排序就是
1、找入度为0的点
2、将入度为0的点输出,然后将这点的出边全部删了。
3、继续循环。
现在想来感觉真的麻烦多了。 于是自己亲手来A。
题目的大意明了:
每输入一组数据,就用拓扑排序一次。
如果排序出来了。 就保存这个值。也就是在第 i 组数据时,确定了顺序。后面的数据直接读取就行,不用管了,到时候直接输出序列,和那个 i 值。
如果排序不出,出现了环。那么也和上面一样处理。
如果这两个结果都不是,那么就是不确定序列。
这个看起来确实蛮简单。
测试数据的话 Discuss 里面有。
下面直接贴代码吧
#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#define N 27
int indegree[N];//存入度
int map[N][N];//存图
int stack[N];//存序列
int count;
int n,m;
int topsort()
{
int i,j=0;
int num0,flag=0;
int num=0,in[N];
for(i=1; i<=n; i++)
in[i]=indegree[i];
count=0;
while(1)
{
num0=0;
j=0;
for(i=1; i<=n; i++)
{
if(in[i]==0)
{
num0=i;
j++;//这个是用来判断入度为0的点有多少个。如果有大于1个的话就是不确定序列
}
}
if(num0)
{
num++;
in[num0]--;
stack[count++]=num0;
if(j>1&&flag!=-1)flag=-1;
for(i=1; i<=n; i++)
{
if(map[num0][i])
{
in[i]--;
}
}
}
else break;
}
if(num!=n)return 0;
if(flag==-1)return -1;
return 1;
}
int main()
{
int i,flag,num,j=0;
char s[4];
while(1)
{
scanf("%d %d",&n,&m);
if(n==0&&m==0)break;
memset(map,0,sizeof(map));
memset(indegree,0,sizeof(indegree));
num=0;
j=0;
for(i=1; i<=m; i++)
{
scanf("%s",s);
if(!j&&!map[s[0]-'A'+1][s[2]-'A'+1])
{
map[s[0]-'A'+1][s[2]-'A'+1]=1;
indegree[s[2]-'A'+1]++;
flag=topsort();
if(flag==0)
{
j=1;
num=i;
}
if(flag==1&&num==0)
{
num=i;j=1;
}
}
}
if(flag==0)
{
printf("Inconsistency found after %d relations.\n",num);
continue;
}
if(flag==1)
{
printf("Sorted sequence determined after %d relations: ",num);
for(i=0; i<count; i++)
{
printf("%c",'A'+stack[i]-1);
}
printf(".\n");
continue;
}
printf("Sorted sequence cannot be determined.\n");
}
return 0;
}