奇异值分解(SVD)原理与在降维中的应用

奇异值分解(SVD)原理与在降维中的应用

https://www.cnblogs.com/pinard/p/6251584.html

我摘一段话,详细的请参考原文

SVD用于PCA

    在主成分分析(PCA)原理总结中,我们讲到要用PCA降维,需要找到样本协方差矩阵XTXXTX的最大的d个特征向量,然后用这最大的d个特征向量张成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵XTXXTX,当样本数多样本特征数也多的时候,这个计算量是很大的。

    注意到我们的SVD也可以得到协方差矩阵XTXXTX最大的d个特征向量张成的矩阵,但是SVD有个好处,有一些SVD的实现算法可以不求先求出协方差矩阵XTXXTX,也能求出我们的右奇异矩阵VV。也就是说,我们的PCA算法可以不用做特征分解,而是做SVD来完成。这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是我们我们认为的暴力特征分解。

    另一方面,注意到PCA仅仅使用了我们SVD的右奇异矩阵,没有使用左奇异矩阵,那么左奇异矩阵有什么用呢?

    假设我们的样本是m×nm×n的矩阵X,如果我们通过SVD找到了矩阵XXTXXT最大的d个特征向量张成的m×dm×d维矩阵U,则我们如果进行如下处理:

X′d×n=UTd×mXm×nXd×n′=Ud×mTXm×n

    可以得到一个d×nd×n的矩阵X‘,这个矩阵和我们原来的m×nm×n维样本矩阵X相比,行数从m减到了d,可见对行数进行了压缩。也就是说,左奇异矩阵可以用于行数的压缩。相对的,右奇异矩阵可以用于列数即特征维度的压缩,也就是我们的PCA降维。    

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值