问题描述:写程序利用SVD分解对数据进行降维,并画出降维后各个节点在”新维度“上值的分布。例如对于矩阵 A(mxn) = UΣV^T, U 分解后每一列〖 u〗i 有m个元素对应m个点,记为〖 u〗(i*). 我们画出〖 u〗_1-〖 u〗_2的坐标下的m个点的散点图
数据集1:https://github.com/shenghua-liu/HoloScope/blob/master/testdata/
下面的yelp.edgelist.gz
1)数据的格式是:用户id,饭店id,1
2)所有的id都已转换到从0开始的整数
提示:1)降维的矩阵是:用户x饭店,需要先构造矩阵;考虑稀疏矩阵,否则内存可能会溢出
2)降维的维度数选择10
3)考虑稀疏矩阵的svds工具
import numpy as np
from scipy.sparse.linalg import svds
import matplotlib.pyplot as plt
import scipy
def dataset1():
with open('yelp.edgelist') as file:
row = []
col = []
data = []
for line in file.readlines():
# print(line)
curLine = line.strip().split(' ')
floatLine = list(map(float,curLine))#这里使用map函数直接将函数装化为float类型
# print(floatLine)