1、基本概念:
在已知试验样本的前提下,估计模型的未知参数,使得产生该样本的可能性最大。
2、分类:离散型和连续型
1)离散型
X为离散型随机变量,分布律为,
随机变量相互独立,联合分布律为
设是的一个样本值,则样本的似然估计函数可以表示为:
给定,使得最大的,作为对参数的估计,即:
2)连续型
X为连续型随机变量,分布律为,
随机变量相互独立,联合分布律为
设是的一个样本值,则样本的似然估计函数可以表示为:
给定,使得最大的,作为对参数的估计,即:
可导时,直接对求导,取导数为0的极值点,可得到。但是大多数情况下直接对变量进行求导反而会使得计算式子更加的复杂,此时可以借用对数函数。对进行求导即可,因为与具有相同的极值点。
3、总结
求模型中参数的极大似然估计的一般步骤(连续型):
1)写出似然估计函数
2)求对数函数
3)求导,得到对数似然方程并解出(多个未知参数的情况下,对各个参数求偏导,得到对数似然方程组)
4、举例