tensorflow 线性回归

输出: 

w_true.shape: (2,)
w_reshape.shape: (2, 1)
Y.shape : (3000, 1)
features[0]: tf.Tensor([-0.4468004 -1.99245  ], shape=(2,), dtype=float32)
lables[0]: tf.Tensor([-1.6724218], shape=(1,), dtype=float32)
tf.Tensor([0.20223746 0.37185124], shape=(2,), dtype=float32)
tf.Tensor([4.583185], shape=(1,), dtype=float32)
w_pred: <tf.Variable 'Variable:0' shape=(2, 1) dtype=float32, numpy=
array([[0.898227 ],
       [4.1819596]], dtype=float32)> 
b_pred: <tf.Variable 'Variable:0' shape=(1,) dtype=float32, numpy=array([-1.8331218], dtype=float32)>
begin to train:
epoch: 0 loss: tf.Tensor(0.06641422, shape=(), dtype=float32)
epoch: 1 loss: tf.Tensor(0.00013125899, shape=(), dtype=float32)
epoch: 2 loss: tf.Tensor(7.7137787e-07, shape=(), dtype=float32)
epoch: 3 loss: tf.Tensor(3.143039e-07, shape=(), dtype=float32)
epoch: 4 loss: tf.Tensor(3.2408622e-07, shape=(), dtype=float32)
epoch: 5 loss: tf.Tensor(4.1735092e-07, shape=(), dtype=float32)
epoch: 6 loss: tf.Tensor(4.5431543e-07, shape=(), dtype=float32)
epoch: 7 loss: tf.Tensor(4.2399319e-07, shape=(), dtype=float32)
epoch: 8 loss: tf.Tensor(4.0079112e-07, shape=(), dtype=float32)
epoch: 9 loss: tf.Tensor(3.8878218e-07, shape=(), dtype=float32)
w_true: tf.Tensor([6. 1.], shape=(2,), dtype=float32)
w_pred: tf.Tensor([6.0000153  0.99999523], shape=(2,), dtype=float32)
b_true: 3
b_pred: <tf.Variable 'Variable:0' shape=(1,) dtype=float32, numpy=array([2.9999723], dtype=float32)>

 代码:

# -*- coding: utf-8 -*-
"""
Created on Wed Mar 15 15:43:47 2023

@author: Shawn.Li
"""

import tensorflow as tf
import random
from d2l import tensorflow as d2l
from matplotlib import pyplot as plt

# 根据线性方程生成一个数据集
# 假设线性方程的系数为 [4, 2.4]  shape = 2,
# 偏置为 3
# 生成的数据集大小为 3000 个

def synthetic_data(w,b,samples_num):    #@save
    X = tf.random.normal((samples_num,w.shape[0]))            # samples_num * w.shape([0]) = 3000 * 2
    
    w_reshape = tf.reshape(w,(-1,1))
    print("w_reshape.shape:",w_reshape.shape)
    Y = tf.matmul(X,w_reshape)          # w不做reshape就只是一个一维的张量,无法与x进行矩阵乘法计算
    Y = Y + b
    Y += tf.random.normal(Y.shape,stddev = 0.001)      # Y.shape = 3000*1
    print("Y.shape :",Y.shape)
    return X,Y

w_true = tf.constant([6., 1])  # 定义这个张量后,维度只是一维的,与X进行矩阵乘法时候需要 renshape
b_true = 3
print("w_true.shape:",w_true.shape)

features ,lables = synthetic_data(w_true,b_true,3000)

print("features[0]:",features[0])
print("lables[0]:",lables[0])


# 在坐标图中绘制(features,lables)

d2l.set_figsize()
d2l.plt.scatter(features[:,1].numpy(),lables.numpy(),0.1)
d2l.plt.scatter(features[:,0].numpy(),lables.numpy(),0.1)


# 这个地方是有问题的,如果是线性函数,那么注释掉26行的代码,图像中应该显示的是一条直线
# 实际情况并不是这个样子,没有看出来是哪里出了问题,应该是对某个指令的理解错误了
fig = plt.figure()
axe1 = plt.axes(projection = '3d')
axe1.scatter(features[:,0].numpy(),features[:,1].numpy(),lables.numpy(),s=0.01)
plt.show()



# 随机的批量迭代读取数据集中的数据
# 关于 yield 的一个通俗的解释:https://blog.csdn.net/mieleizhi0522/article/details/82142856/
# 数据迭代器,通过不断的调用data_iter.next(),或者是for循环,从数据集中随机取出batch_size大小的一组数据
# tf.gather 根据indices(索引)从张量中抽取数据
def data_iter(features,lables,batch_size):
    examples_num = len(lables)
    #print("examples_num:",examples_num)
    indices = list(range(examples_num))
    #print("indices:",indices[0:5])
    random.shuffle(indices)             # 注意这里不是通过return返回结果,而是类似于C里面的指针返回结果,因为没注意到这个,调试了半个多小时
    #print("indices:",indices[0:5])
    
    for i in range(0,examples_num,batch_size):
        #print("i:",i)
        j = tf.constant(indices[i:min(i+batch_size,examples_num)])
        #print("j:",j)
        yield tf.gather(features,j) , tf.gather(lables,j)
        
batch_data = data_iter(features,lables,batch_size = 20)

for x,y in batch_data:
    print(x[0])
    print(y[0])
    break



# 在线性回归中我们的目标模型是已知的,模型参数是未知的,我们正是通过不断的迭代数据集中的
# 数据,反向逼近模型参数
# 我们根据模型的形式先创建它,并进行参数随机初始化
def linear_regression(w,x,b):
    return (tf.matmul(x,w) + b)

w_pred = tf.Variable(tf.random.normal([2,1]),trainable=True)        # 注意标注为可训练型变量
b_pred = tf.Variable(tf.random.normal([1]),trainable=True)
print("w_pred:",w_pred,"\nb_pred:",b_pred)


# 然后设计一个损失函数和优化算法
def calc_lost(y,y_hat):
    return ((y_hat - tf.reshape(y,y_hat.shape))**2/2)        # 平方损失函数


def sgd(paramaters,grads,learn_rate,batch_size):        # 梯度下降法优化函数
    for param,grad in zip(paramaters,grads):            # zip 是个迭代器,用于逐个取出序列元素
        param.assign_sub(learn_rate*grad/batch_size)
        


# 进行线性回归的计算,也就是训练
lr = 0.03           # 学习率
epochs_num = 10      # 训练轮次
batch_size = 30
print("begin to train:")
for epoch in range(epochs_num):         # 相当于3000组样本数据被打乱重排了5次,系数被优化了 3000/batch_size * epochs_num 次
    batch_data1 = data_iter(features,lables,batch_size)
    #print("data iter success")
    for x_iter,y_iter in batch_data1:
        with tf.GradientTape() as g:                              # 记录计算过程,用于自动梯度计算
            model = linear_regression(w_pred, x_iter, b_pred)    # 利用模型函数和初始化的模型参数创建模型
            #print("build mode success")
            loss = calc_lost(y_iter,model)                       # 计算训练损失
            #print("loss calculate success")
        w_grad,b_grad = g.gradient(loss,[w_pred,b_pred])        # 计算损失函数关于预测参数的梯度
        sgd([w_pred,b_pred],[w_grad,b_grad],lr,batch_size)      # 沿梯度反方向优化预测参数
    
    # 计算每轮训练的效果,用损失函数表示
    epoch_loss = calc_lost(y_iter,linear_regression(w_pred,x_iter,b_pred))
    print("epoch:",epoch,"loss:",tf.reduce_mean(epoch_loss))

print("w_true:",w_true)
print("w_pred:",tf.reshape(w_pred,w_true.shape))
print("b_true:",b_true)
print("b_pred:",b_pred)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值