看了一篇关于 BP 神经网络的文章,可以快速理解bp神经网络,
https://yq.aliyun.com/articles/277312
下面是我的理解
bp神经网络就是 将 自然问题 一个黑箱的输入 A 到结果输出 B
例如输入一张猫的照片 输出是一个cat
的问题 用电脑猜测出黑箱的结构 用代码实现这个黑箱的转换
神经网络就是一个通用型的黑箱结构,可以设定神经层数,但是每层神经之间的传递参数是不确定的,这个要通过数据学习不停的进行纠正,这个就是数据学习的过程
例如这个bp神经网络,i1 i2 是输入参数 o1 o2 是输出结果 里面的 w1 w2 w3 w4 w5 w6 w7 w8 b1 b2 就是待确定的传递参数,通过给定一个初始值,神经网络开始读取数据运作,得到o1 o2
将运算出来的 o1 o2 和真实值进行误差比较
通过运算的结果 和 实际的结果的差距,进行微分方程 对 w1 w2 w3 w4 w5 w6 w7 w8 b1 b2 进行求导, 利用导数 修改 w1 w2 w3 w4 w5 w6 w7 w8 b1 b2, 然后不停的进行迭代 运算,找到局部最优解