力扣128. 最长连续序列

题目描述:
给定一个未排序的整数数组,找出最长连续序列的长度。

示例1:
输入: [100, 4, 200, 1, 3, 2]
输出: 4
解释: 最长的连续序列是 [1, 2, 3, 4]。其长度为 4。

示例2:
输入: [0,3,7,2,5,8,4,6,0,1]
输出: 9

解题思路:
方法一:排序
将数组排序,然后在排序后的数组中找到最长连续序列。时间复杂度:O(NlogN),空间复杂度为:O(1)(取决于排序实现)

方法二:哈希表
使用哈希表存储每个端点值对应连续区间的长度,若数已在哈希表中出现过,则跳过不处理。若是新数加入:

  1. 取出其左右相邻数已有的连续区间长度 left 和 right
  2. 计算当前数的区间长度为:cur_length = left + right + 1
  3. 根据 cur_length 更新最长连续区间长度 max_length 的值
  4. 更新区间两端点的长度值

时间复杂度:O(N),空间复杂度为: O(N)

代码实现(使用哈希表):

class Solution {
    public int longestConsecutive(int[] nums) {
        Set<Integer> set = new HashSet<>();
        for (int num : nums) {
            set.add(num);
        }
        int max = 0;
        for (int num : nums) {
            // num之前已经访问过了,假设序列为[a,b],
            // 这里访问过a,那么在后面的循环中就可以跳过这个序列
            if (set.contains(num-1)) {
                continue;
            }
            int cur = num;
            int curMax = 1;
            while (set.contains(cur+1)) {
                cur++;
                curMax++;
            }
            max = Math.max(max, curMax);
        }
        return max;
    }
}

时间复杂度分析:
遍历数组一次,每个数只访问一次,因此时间复杂度为O(N)。

空间复杂度分析:
哈希表中存储了所有的数,因此空间复杂度为O(N)。

LeetCode力扣)上,有一个经典的算法题目叫做“最长连续序列”(Longest Continuous Increasing Subsequence),通常用C++或其他编程语言进行解答。这个题目的目的是找到一个给定整数数组中的最长递增子序列。递增子序列是数组中的一段连续元素,它们按顺序严格增大。 这里是一个简单的C++解决方案思路: ```cpp #include <vector> using namespace std; class Solution { public: int longestContinuousIncreasingSubsequence(vector<int>& nums) { if (nums.empty()) return 0; // 避免空数组的情况 int n = nums.size(); vector<int> dp(n, 1); // dp[i] 表示以nums[i]结尾的最长递增子序列长度 int max_len = 1; // 初始化最长递增子序列长度为1 for (int i = 1; i < n; ++i) { // 遍历数组,从第二个元素开始 if (nums[i] > nums[i-1]) { // 如果当前元素比前一个大 dp[i] = dp[i-1] + 1; // 更新dp值,考虑加入当前元素后的增长长度 max_len = max(max_len, dp[i]); // 检查是否更新了最长序列长度 } } return max_len; // 返回最长连续递增子序列的长度 } }; ``` 在这个代码中,我们使用了一个动态规划(Dynamic Programming)的方法,维护了一个数组`dp`来存储每个位置以该位置元素结尾的最大递增子序列长度。遍历过程中,如果遇到当前元素大于前一个元素,则说明可以形成一个新的递增子序列,所以将`dp[i]`设置为`dp[i-1]+1`,并更新全局的最长序列长度。 如果你想要深入了解这个问题,可以问: 1. 这个问题的时间复杂度是多少? 2. 动态规划是如何帮助解决这个问题的? 3. 如何优化这个算法,使其空间复杂度更低?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值