128.最长连续序列
难度:困难
标签:并查集
给定一个未排序的整数数组,找出最长连续序列的长度。
要求算法的时间复杂度为 O(n)。
示例:
输入: [100, 4, 200, 1, 3, 2]
输出: 4
解释: 最长连续序列是 [1, 2, 3, 4]。它的长度为 4。
思路:运用并查集,使用hashmap fatherset key是数组的值,value是key的父结点
初始化时,一共n个树。还有一个hashmap size 放的是每棵树的大小结点个数
遍历数组,然后把判断nums[i]-1是否在 fatherset中 在的话,合并两个结点,合并的时候,需要更新最大的树的结点个数
public int longestConsecutive(int[] nums){
if(nums==null||nums.length==0)
return 0;
UF uf=new UF(nums);
for (int i = 0; i < nums.length; i++) {
if(uf.fatherset.containsKey(nums[i]-1)){
uf.union(nums[i],nums[i]-1);
}
}
return uf.max;
}
class UF{
public int max=1;
private int count;
public HashMap<Integer,Integer> fatherset=new HashMap<>();
public HashMap<Integer,Integer> size=new HashMap<>();
public UF(int[] nums){
for(int i=0;i<nums.length;i++){
fatherset.put(nums[i],nums[i]);
size.put(nums[i],1);
}
count=nums.length;
}
public int find(int p){
int father=fatherset.get(p);
if(p!=father) {
father=find(father);
fatherset.replace(p,father);
}
return father;
}
public void union(int p,int q){
int proot=find(p);
int qroot=find(q);
if(proot==qroot) return;
if(size.get(proot)<size.get(qroot)){
fatherset.replace(proot,qroot);
size.replace(qroot,size.get(qroot)+size.get(proot));
max=Math.max(max,size.get(qroot));
}
else {
fatherset.replace(qroot,proot);
size.replace(proot,size.get(qroot)+size.get(proot));
max=Math.max(max,size.get(proot));
}
count--;
}
准备一个hashset,将所有的num放入到里面
遍历时,只有当num-1不在set里面时,说明出现了新的序列
就寻找这个序列的长度,然后更新最大的长度
public int longestConsecutive(int[] nums) {
Set<Integer> num_set = new HashSet<Integer>();
for (int num : nums) {
num_set.add(num);
}
int longestStreak = 0;
for (int num : num_set) {
if (!num_set.contains(num-1)) {
int currentNum = num;
int currentStreak = 1;
while (num_set.contains(currentNum+1)) {
currentNum += 1;
currentStreak += 1;
}
longestStreak = Math.max(longestStreak, currentStreak);
}
}
return longestStreak;
}