小新pro13 (2020款,Nvidia MX350)+win10+cuda10.2+cudnn7.6+pytorch搭建深度学习环境

本文介绍了使用小新Pro13 2020款(Nvidia MX350)在Windows 10系统下搭建深度学习环境的过程,包括CUDA和CUDNN的安装,以及PyTorch的配置。在遇到Ubuntu兼容性问题后,作者转向Win10环境,提供了详细的安装步骤和注意事项,强调了选择合适的Anaconda版本和利用清华源进行离线安装PyTorch的必要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器说明:
小新pro13 2020款(事先说明,大家的本子一定要有独立显卡),显卡升级为mx350,相对于mx250来讲档次上升了一个层次,但是对于Nvidia系列的显卡来讲,GTX系列的显卡比MX系列有着更加出色的性能,对于大型游戏(本人不太懂端游),和专业人员(比如视频剪辑,还有我们深度学习环境搭建)来讲有着很好的作用。前面我所说的MX350的性能归为入门级的显卡,性能接近于gtx系列中的gtx1050,有着2g的显存,这对于普通办公和娱乐的用户来讲,都能看上1080p的视频,是一个最基本的要求。而对于深度学习环境来讲,如果我们只是想体验一下CPU和GPU处理数据的不同,仅仅运行一些简单的DEMO,mx350和gtx1050系列的本子都可以。
系统说明
上个礼拜本子刚拿到手时,本人直接就把win10的硬盘分离出一部分,进行win10+ubuntu20.04的双系统的安装。现在ubuntu下进行整个环境的搭建。包括驱动的安装,cuda的安装,cudnn的安装,pytorch的安装等等,等自己全部安装好之后,当自己的本子切换到独立显卡的时候,重启进入系统,用上一段时间,整个Ubuntu就卡住了,我觉得是nvidia对于20的ubuntu在兼容性方面还没完全弄好。所以先把Ubuntu的环境放下,进入win10下进行搭建。经过搜索,我发现win10下就没这种问题。只要你的电脑支持独立显卡,你在更新驱动的时候,就会安装好nvidia的相关驱动。
我也是跟着

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值