MX350配置pytorch环境

本文档详细介绍了在拥有MX350显卡的电脑上配置CUDA 10.2、cuDNN及PyTorch的步骤。首先,通过NVIDIA官网下载适合MX350的CUDA版本,然后设置环境变量。接着,下载并安装cuDNN,将其文件复制到CUDA安装目录。最后,使用pip安装PyTorch,并验证GPU加速功能是否正常工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.电脑基本环境

之前电脑里面下载的anaconda,显卡是MX350

2. 下载cuda

CUDA(Compute Unified Device Architecture),是显卡厂商NVIDIA推出的运算平台。 CUDA™是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。 它包含了CUDA指令集架构(ISA)以及GPU内部的并行计算引擎。 开发人员可以使用C语言来为CUDA™架构编写程序,C语言是应用最广泛的一种高级编程语言。所编写出的程序可以在支持CUDA™的处理器上以超高性能运行。CUDA3.0已经开始支持C++和FORTRAN。
我对cuda的理解就是cuda的作用就是可以让程序员直接操纵GPU,而不是利用CPU给GPU发送指令。
cuda的本版选择要看自己的显卡情况:
点击nvidia控制面板
在这里插入图片描述
点击左下角系统信息
在这里插入图片描述
找到合适cuda版本,我这里是10.2
在这里插入图片描述

  • 进入
要在 mx350 上安装 PyTorch GPU 版本,需要执行以下步骤: 1. 确保你已经安装了适用于 mx350 的 NVIDIA 显卡驱动程序。你可以从 NVIDIA 官方网站下载并安装最新的驱动程序。 2. 安装 CUDA 工具包。访问 NVIDIA 的开发者网站,下载与你的显卡和操作系统兼容的 CUDA 版本,并按照它们的安装指南进行安装。 3. 安装 cuDNN 库。cuDNN 是一个用于深度神经网络的加速库,PyTorch GPU 版本需要它来提供更好的性能。你可以从 NVIDIA 开发者网站下载 cuDNN,并按照其安装指南进行安装。 4. 创建并激活一个 Python 虚拟环境(可选)。虚拟环境可以帮助你隔离不同的 Python 环境,并确保安装的软件包不会相互干扰。你可以使用 virtualenv 或者 conda 来创建虚拟环境。 5. 使用 pip 或者 conda 安装 PyTorch GPU 版本。打开终端或者命令提示符,运行以下命令来安装 PyTorch: 使用 pip: ``` pip install torch torchvision ``` 使用 conda: ``` conda install pytorch torchvision cudatoolkit=<your_cudatoolkit_version> ``` 注意替换 `<your_cudatoolkit_version>` 为你安装的 CUDA 工具包版本。 完成上述步骤后,你就可以在 mx350 上使用 PyTorch GPU 版本了。你可以通过导入 torch 库来验证它是否正确安装: ```python import torch print(torch.cuda.is_available()) ``` 如果输出为 True,则说明 PyTorch GPU 版本已经成功安装并可以使用 mx350 的 GPU 进行加速。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值