tensorflow 的 sess.partial_run

这篇博客详细记录了TensorFlow中sess.partial_run的使用,包括三种不同形式的实验,展示了即使未在fetches中指定,只要feed_dict提供了placeholder值,相关操作也会执行。作者提醒在使用partial_run时需要注意其可能产生的不同运行结果,因为它的设计初衷是用于分步执行依赖于前一步结果的代码。
摘要由CSDN通过智能技术生成

小记

tensorflow的sess有一个分步执行的函数partial_run,此函数的文档说明和具体运行有点差异,留文以记录。

形式1

import tensorflow as tf

a = tf.placeholder(dtype=tf.float32, shape=[])
b = tf.placeholder(dtype=tf.float32, shape=[])
c = tf.placeholder(dtype=tf.float32, shape=[])
e = tf.placeholder(dtype=tf.float32, shape=[])

d = tf.Variable(dtype=tf.float32, initial_value=0)
r1 = tf.add(a, b)
a_0 = tf.assign(d, tf.add(d,c),name='0')
a_1 = tf.assign(d, tf.add(d,e),name='1')

with tf.Session() 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值