pandas的dataframe更新index

本文介绍了一种在Pandas中处理数据时遇到的问题及解决方案:如何将经过筛选后的DataFrame索引重置为连续整数。文章详细描述了尝试使用reindex()方法失败的过程,并最终通过重建DataFrame的方式成功解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在使用pandas进行数据操作时遇到了如下问题:
首先对数据进行了抽取:
equ_data = equ_data[equ_data["link_id"] == link_id]
抽取完之后equ_data的index 变成了乱序的,如下:

            log_time       ratio
16626   2018/2/25 18:44:06  0.00
16650   2018/2/25 18:59:52  0.00
16668   2018/2/25 19:04:52  0.00
16692   2018/2/25 19:09:52  0.00
16705   2018/2/25 19:14:52  0.00

希望把equ_data的index 变成range(len(equ_data)),如下:

            log_time    ratio
0   2018/2/25 18:44:06  0.00
1   2018/2/25 18:59:52  0.00
2   2018/2/25 19:04:52  0.00
3   2018/2/25 19:09:52  0.00
4   2018/2/25 19:14:52  0.00

尝试了网上的做法,re_index()是用来更新index顺序的,并不能修改index。

equ_data= equ_data.reindex(index=range(len(equ_data)))

并且,reindex()会增加更多的index,其他列值可以设置为NAN,或bfill(向前填充),backfill(向后填充)。

df.reindex(index=list, fill_value=0)
df.reindex(index=list, method='bfill')

rename()方法可以修改列名和index名,但必须一一指定,如下:

test.rename(columns={"log_time":"Log_time", "ratio1":"Ratio1"}, inplace=True)
test.rename(index={16626:0}, inplace=True)

效果如下:

            Log_time       Ratio
0       2018/2/25 18:44:06  0.00
16650   2018/2/25 18:59:52  0.00
16668   2018/2/25 19:04:52  0.00
16692   2018/2/25 19:09:52  0.00
16705   2018/2/25 19:14:52  0.00

不可能对所有的index都一一指定,所以该方法不可行。
最后想到重新构建DataFrame:

data = {"log_time": pd.Series(equ_data["log_time"].values),
            "ratio1": pd.Series(equ_data["ratio1"].values)}
new_df = pd.DataFrame(data)

完美解决,结果如下:

            log_time    ratio
0   2018/2/25 18:44:06  0.00
1   2018/2/25 18:59:52  0.00
2   2018/2/25 19:04:52  0.00
3   2018/2/25 19:09:52  0.00
4   2018/2/25 19:14:52  0.00
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

pit_man

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值