二叉平衡树
二叉平衡树的前置理论知识,这篇博客已经总结得比较完善了数据结构之——平衡二叉树(内容详解)。在此不做赘述,本文基于C++实现,提供二叉平衡树的构造(插入)代码,基于C++实现。
二叉平衡树的结构定义
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode *fa = nullptr; // 存储父节点
int depth = 1; // 存储深度
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
这里设计的结构对比二叉树增加了:
- f a fa fa 指针:指向当前节点的父节点,设立的原因是实现后文的 L L LL LL等旋转的时候快速获取父节点。
- d e p t h depth depth:指的是以当前节点为根节点的子树的高度,设立的原因是为了计算平衡因子=左子树和右子树的高度的差值。
插入代码及解释
int get_depth(TreeNode* root) { return root == nullptr ? 0 : root->depth; }
void update_depth(TreeNode*& root) { root->depth = max(get_depth(root->left), get_depth(root->right)) + 1; }
void insert(TreeNode*& root, int v){
// 向 root 根插入元素 v
if (root == nullptr) {
root = new TreeNode(v);
return ;
}
if (root->left == nullptr && root->right == nullptr) {
if (root->val == v) return ;
(root->val < v ? root->right : root->left) = new TreeNode(v);
(root->val < v ? root->right : root->left)->fa = root;
root->depth = 2;
return ;
}
if (root->val < v) {
insert(root->right, v);
root->right->fa = root;
}else if (root->val > v) {
insert(root->left, v);
root->left->fa = root;
}
// 检查平衡因子
int left_depth = root->left ? root->left->depth : 0, right_depth = root->right ? root->right->depth : 0;
if (abs(left_depth - right_depth) > 1) { // 调整树型
TreeNode* tmpFa = root->fa ? root->fa : new TreeNode(-INT_MAX, root, nullptr);
bool flag = tmpFa->left == root;
if (root->left && root->val > v) { // 插入到左子树
if (v < root->left->val) { // LL 平衡旋转
TreeNode* B_Node = root->left, *B_Node_r = B_Node->right;
B_Node->right = B_Node->fa, B_Node->right->fa = B_Node;
B_Node->right->left = B_Node_r;
if (B_Node_r) B_Node->right->left->fa = B_Node->right;
(flag ? tmpFa->left : tmpFa->right) = B_Node;
update_depth(root), update_depth(B_Node);// 更新高度
} else { // LR平衡旋转
TreeNode* B_Node = root->left, *C_Node = B_Node->right;
TreeNode* C_Node_l = C_Node->left, *C_Node_r = C_Node->right;
C_Node->left = B_Node, C_Node->left->fa = C_Node;
C_Node->right = root, C_Node->right->fa = C_Node;
B_Node->right = C_Node_l;
if (C_Node_l) B_Node->right->fa = B_Node;
root->left = C_Node_r;
if (C_Node_r) root->left->fa = root;
(flag ? tmpFa->left : tmpFa->right) = C_Node;
update_depth(root), update_depth(B_Node), update_depth(C_Node);// 更新高度
}
} else { // 插入到右子树
if (v > root->right->val) { // RR 平衡旋转
TreeNode* B_Node = root->right, *B_Node_l = B_Node->left;
B_Node->left = B_Node->fa, B_Node->left->fa = B_Node;
B_Node->left->right = B_Node_l;
if (B_Node_l) B_Node->left->right->fa = B_Node->left;
(flag ? tmpFa->left : tmpFa->right) = B_Node;
update_depth(root), update_depth(B_Node); // 更新高度
} else { // RL 平衡旋转
TreeNode* B_Node = root->right, *C_Node = B_Node->left;
TreeNode* C_Node_l = C_Node->left, *C_Node_r = C_Node->right;
C_Node->left = root, C_Node->left->fa = C_Node;
C_Node->right = B_Node, C_Node->right->fa = C_Node;
B_Node->left = C_Node_r;
if (C_Node_r) B_Node->left->fa = B_Node;
root->right = C_Node_l;
if (C_Node_l) root->right->fa = root;
(flag ? tmpFa->left : tmpFa->right) = C_Node;
update_depth(root), update_depth(B_Node), update_depth(C_Node);// 更新高度
}
}
(flag ? tmpFa->left : tmpFa->right)->fa = tmpFa;
if (tmpFa->val == -INT_MAX) root = (flag ? tmpFa->left : tmpFa->right);
}
update_depth(root);
return ;
}
看懂代码的前提还是需要看懂相关的旋转理论,其实本质上代码就是对旋转的过程进行了实现。
需要注意的是:
- 旋转的过程中,需要及时更新父节点的情况。
- 旋转的过程中,有的节点的高度是会发生改变的,因而需要及时进行更新。
代码测试
int main(){
vector<int> nums{15, 3, 7, 10, 9, 8};
TreeNode* root = nullptr;
for (int num : nums) {
insert(root, num);
}
cout << "preOrder: ";
preOrder(root);
cout << endl;
cout << "inOrder: ";
inOrder(root);
cout << endl;
return 0;
}
测试的结果如下:
preOrder: 9, 7, 3, 8, 10, 15
inOrder: 3, 7, 8, 9, 10, 15
完整代码:
#include<bits/stdc++.h>
using namespace std;
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode *fa = nullptr; // 存储父节点
int depth = 1; // 存储深度
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
int get_depth(TreeNode* root) { return root == nullptr ? 0 : root->depth; }
void update_depth(TreeNode*& root) { root->depth = max(get_depth(root->left), get_depth(root->right)) + 1; }
void insert(TreeNode*& root, int v){
// 向 root 根插入元素 v
if (root == nullptr) {
root = new TreeNode(v);
return ;
}
if (root->left == nullptr && root->right == nullptr) {
if (root->val == v) return ;
(root->val < v ? root->right : root->left) = new TreeNode(v);
(root->val < v ? root->right : root->left)->fa = root;
root->depth = 2;
return ;
}
if (root->val < v) {
insert(root->right, v);
root->right->fa = root;
}else if (root->val > v) {
insert(root->left, v);
root->left->fa = root;
}
// 检查平衡因子
int left_depth = root->left ? root->left->depth : 0, right_depth = root->right ? root->right->depth : 0;
if (abs(left_depth - right_depth) > 1) { // 调整树型
TreeNode* tmpFa = root->fa ? root->fa : new TreeNode(-INT_MAX, root, nullptr);
bool flag = tmpFa->left == root;
if (root->left && root->val > v) { // 插入到左子树
if (v < root->left->val) { // LL 平衡旋转
TreeNode* B_Node = root->left, *B_Node_r = B_Node->right;
B_Node->right = B_Node->fa, B_Node->right->fa = B_Node;
B_Node->right->left = B_Node_r;
if (B_Node_r) B_Node->right->left->fa = B_Node->right;
(flag ? tmpFa->left : tmpFa->right) = B_Node;
update_depth(root), update_depth(B_Node);// 更新高度
} else { // LR平衡旋转
TreeNode* B_Node = root->left, *C_Node = B_Node->right;
TreeNode* C_Node_l = C_Node->left, *C_Node_r = C_Node->right;
C_Node->left = B_Node, C_Node->left->fa = C_Node;
C_Node->right = root, C_Node->right->fa = C_Node;
B_Node->right = C_Node_l;
if (C_Node_l) B_Node->right->fa = B_Node;
root->left = C_Node_r;
if (C_Node_r) root->left->fa = root;
(flag ? tmpFa->left : tmpFa->right) = C_Node;
update_depth(root), update_depth(B_Node), update_depth(C_Node);// 更新高度
}
} else { // 插入到右子树
if (v > root->right->val) { // RR 平衡旋转
TreeNode* B_Node = root->right, *B_Node_l = B_Node->left;
B_Node->left = B_Node->fa, B_Node->left->fa = B_Node;
B_Node->left->right = B_Node_l;
if (B_Node_l) B_Node->left->right->fa = B_Node->left;
(flag ? tmpFa->left : tmpFa->right) = B_Node;
update_depth(root), update_depth(B_Node); // 更新高度
} else { // RL 平衡旋转
TreeNode* B_Node = root->right, *C_Node = B_Node->left;
TreeNode* C_Node_l = C_Node->left, *C_Node_r = C_Node->right;
C_Node->left = root, C_Node->left->fa = C_Node;
C_Node->right = B_Node, C_Node->right->fa = C_Node;
B_Node->left = C_Node_r;
if (C_Node_r) B_Node->left->fa = B_Node;
root->right = C_Node_l;
if (C_Node_l) root->right->fa = root;
(flag ? tmpFa->left : tmpFa->right) = C_Node;
update_depth(root), update_depth(B_Node), update_depth(C_Node);// 更新高度
}
}
(flag ? tmpFa->left : tmpFa->right)->fa = tmpFa;
if (tmpFa->val == -INT_MAX) root = (flag ? tmpFa->left : tmpFa->right);
}
update_depth(root);
return ;
}
void preOrder(TreeNode* root){
if (root == nullptr) return;
cout << root->val << ", ";
preOrder(root->left);
preOrder(root->right);
}
void inOrder(TreeNode* root){
if (root == nullptr) return;
inOrder(root->left);
cout << root->val << ", ";
inOrder(root->right);
}
int main(){
vector<int> nums{15, 3, 7, 10, 9, 8};
TreeNode* root = nullptr;
for (int num : nums) {
insert(root, num);
}
cout << "preOrder: ";
preOrder(root);
cout << endl;
cout << "inOrder: ";
inOrder(root);
cout << endl;
return 0;
}
从以上测试结果来看,代码应当没有很大的问题,可放心食用~
创作不易,欢迎点赞,感谢~~