【蓝桥杯】历届试题 油漆面积(C++)

【蓝桥杯】历届试题 油漆面积(C++)

问题描述

解题思路

具体代码

问题描述

题目链接:油漆面积
资源限制
时间限制:2.0s 内存限制:256.0MB
问题描述
  X星球的一批考古机器人正在一片废墟上考古。
  该区域的地面坚硬如石、平整如镜。
  管理人员为方便,建立了标准的直角坐标系。
  每个机器人都各有特长、身怀绝技。它们感兴趣的内容也不相同。
  经过各种测量,每个机器人都会报告一个或多个矩形区域,作为优先考古的区域。
  矩形的表示格式为(x1,y1,x2,y2),代表矩形的两个对角点坐标。
  为了醒目,总部要求对所有机器人选中的矩形区域涂黄色油漆。
  小明并不需要当油漆工,只是他需要计算一下,一共要耗费多少油漆。
  其实这也不难,只要算出所有矩形覆盖的区域一共有多大面积就可以了。
  注意,各个矩形间可能重叠。
  本题的输入为若干矩形,要求输出其覆盖的总面积。
  
输入格式
  第一行,一个整数n,表示有多少个矩形(1<=n<10000)
  接下来的n行,每行有4个整数x1 y1 x2 y2,空格分开,表示矩形的两个对角顶点坐标。
  (0<= x1,y1,x2,y2 <=10000)
输出格式
  一行一个整数,表示矩形覆盖的总面积面积。
样例输入
3
1 5 10 10
3 1 20 20
2 7 15 17
样例输出
340
样例输入
3
5 2 10 6
2 7 12 10
8 1 15 15
样例输出
128

解题思路

思路:用线性扫描的方法,当输入一个矩形的两个对角点坐标时,用两个for循环从x1到x2,y1到y2进行逐点扫描,进行标记,涂上油漆,若被标记,则面积增加。

#include <iostream>
#
<think>好的,我现在需要帮助用户查找蓝桥杯比赛中关于棋盘问题的树状数组解法或实现代码。首先,我要确定用户的需求是什么。用户提到了“棋盘问题”和“树状数组”,可能需要解决的是二维区间操作问题,比如格子修改或查询,这在蓝桥杯的题目中比较常见,比如《棋盘上的问题》或《格子刷油漆》等题目。 首先,我需要回忆树状数组(Fenwick Tree)的基本知识。树状数组通常用于高效处理前缀和查询和单点更新,时间复杂度为O(log n)。但在棋盘问题中,可能涉及到二维的情况,这时候需要使用二维树状数组,可以处理二维区域的操作,比如子矩阵的更新和求和。 接下来,我需要考虑蓝桥杯历届真题中是否有类似的题目。根据引用[1]和[2],用户提供的参考资料可能涉及C++和Python的代码,但具体到棋盘和树状数组的结合,可能需要进一步查找相关题解。例如,有些题目可能要求动态维护棋盘的状态,进行多次区间增减操作,并查询某个区域的和或极值。这时候树状数组的优势就体现出来了。 然后,用户需要解题思路和实现代码。针对二维棋盘问题,树状数组的二维实现是关键。每个节点(i,j)维护的是一个二维的前缀和信息。当进行区间更新时,可能需要使用差分的方法,将区间操作转化为四个单点操作,再利用树状数组的高效更新和查询。 例如,假设题目要求对棋盘的一个子矩阵进行增加某个值,然后查询某个点的值。这时候可以用二维树状数组结合差分的方法。具体来说,对于每个更新操作(x1,y1,x2,y2)加上v,可以通过四次更新操作实现:在(x1,y1)加v,(x1,y2+1)减v,(x2+1,y1)减v,(x2+1,y2+1)加v。这样,查询某个点(x,y)的值时,只需计算前缀和即可得到当前值。 接着,代码实现部分需要构建二维树状数组的结构。在Python中,可以初始化一个二维数组,并实现update和query方法。需要注意的是,树状数组的下标通常从1开始,因此在处理输入数据时可能需要调整坐标。 验证思路的正确性也很重要。例如,考虑一个小棋盘,手动模拟几次更新和查询操作,确保结果符合预期。同时,需要注意边界条件,比如当更新区域超出棋盘范围时的处理。 最后,根据用户的引用资料,引用[1]提到了C++中的unordered_map用于节点答案的存储,可能与本题无关,但引用[2]中的Python处理大数的方法可能在输入时有用,但树状数组的实现本身不需要处理大数,所以主要关注树状数组的结构和操作。 总结步骤: 1. 确定问题类型:二维区间更新和单点查询。 2. 使用二维树状数组结合差分方法处理区间更新。 3. 实现二维树状数组的update和query函数。 4. 编写代码框架,处理输入输出,并测试样例。 可能的挑战包括正确实现二维树状数组的更新和查询逻辑,以及差分方法的正确应用。需要仔细检查每个步骤,避免逻辑错误。</think>关于蓝桥杯比赛中棋盘问题与树状数组的结合应用,以下为典型解题思路及实现代码: --- ### 问题特征 棋盘问题通常涉及**二维区间操作**,例如: - 多次对子矩阵执行增减操作 - 查询单点或子矩阵的值 - 统计符合特定条件的区域 树状数组(Fenwick Tree)通过$O(\log n)$时间复杂度实现高效的前缀和计算与单点更新,适合处理这类高频操作的问题[^1]。 --- ### 解题思路(以子矩阵增减+单点查询为例) 1. **差分思想** 将二维区间增减转化为四个单点操作: $$ \text{update}(x1,y1,+v),\ \text{update}(x1,y2+1,-v) $$ $$ \text{update}(x2+1,y1,-v),\ \text{update}(x2+1,y2+1,+v) $$ 2. **二维树状数组实现** 维护差分数组的前缀和,实现单点修改与区域查询: ```python class Fenwick2D: def __init__(self, n, m): self.n = n self.m = m self.tree = [[0]*(m+1) for _ in range(n+1)] def update(self, x, y, delta): while x <= self.n: y1 = y while y1 <= self.m: self.tree[x][y1] += delta y1 += y1 & -y1 x += x & -x def query(self, x, y): res = 0 while x > 0: y1 = y while y1 > 0: res += self.tree[x][y1] y1 -= y1 & -y1 x -= x & -x return res ``` 3. **操作映射** - **子矩阵更新**:调用四次`update()`实现差分 - **单点查询**:直接计算`query(x,y)` --- ### 完整代码实现(Python) ```python class Fenwick2D: def __init__(self, n, m): self.n = n self.m = m self.tree = [[0]*(m+2) for _ in range(n+2)] # 下标从1开始 def update(self, x, y, delta): while x <= self.n: y1 = y while y1 <= self.m: self.tree[x][y1] += delta y1 += y1 & -y1 x += x & -x def query(self, x, y): res = 0 while x > 0: y1 = y while y1 > 0: res += self.tree[x][y1] y1 -= y1 & -y1 x -= x & -x return res # 输入棋盘大小n x m,操作次数q n, m = map(int, input().split()) q = int(input()) fw = Fenwick2D(n, m) for _ in range(q): op = list(map(int, input().split())) if op[0] == 1: # 子矩阵更新: op1 x1 y1 x2 y2 v x1, y1, x2, y2, v = op[1], op[2], op[3], op[4], op[5] fw.update(x1, y1, v) fw.update(x1, y2+1, -v) fw.update(x2+1, y1, -v) fw.update(x2+1, y2+1, v) else: # 单点查询: op2 x y x, y = op[1], op[2] print(fw.query(x, y)) ``` --- ### 应用场景 1. 蓝桥杯《格子刷油漆》题型中动态维护棋盘状态 2. 统计符合条件(如异或特征)的区域数量 3. 解决多次操作后的棋盘极值问题 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值